## **Terpyridine-Derived Perovskite Single Crystals with Tunable**

### **Structure and Electronic Dimensionality**

Yaxuan Yuan<sup>a</sup>, Yeming Xian<sup>a</sup>, Yi Long<sup>a</sup>, Yangyi Zhang<sup>a</sup>, Naveed Ur Rahman<sup>a</sup>, Yongli Zhang<sup>b,\*</sup>, Jiandong Fan <sup>a</sup>, Wenzhe Li<sup>a,\*</sup>

<sup>a</sup> Institute of New Energy Technology, Department of Electronic Engineering, College

of Information Science and Technology, Jinan University, Guangzhou, 510632, China

<sup>b</sup> Department of Ecology, College of Life Science and Technology, Jinan University,

Guangzhou, 510632, China

\* Correspondence: li\_wz16@jnu.edu.cn, zhangyl@jnu.edu.cn.

# Contents

| S3    | Experimental section                                                                                                                                                              |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S4-S5 | Morphology and XRD patterns of $Tpy_2PbI_6$ , $Tpy_4Pb_5I_{18}$ and $Tpy_2Pb_3I_6$ single                                                                                         |
|       | crystals.                                                                                                                                                                         |
| S5    | . XPS spectra of $Tpy_2PbI_6$ , $Tpy_4Pb_5I_{18}$ and $Tpy_2Pb_3I_6$ single crystals.                                                                                             |
| S6    | . UV-vis spectra of Tpy <sub>2</sub> PbI <sub>6</sub> , Tpy <sub>4</sub> Pb <sub>5</sub> I <sub>18</sub> and Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6</sub> single crystals.     |
| S6    | TGA/DSC curves of $Tpy_2PbI_6$ , $Tpy_4Pb_5I_{18}$ and $Tpy_2Pb_3I_6$ single crystals.                                                                                            |
| S7    | . LUMO-associated charge distribution and HOMO-associated charge                                                                                                                  |
|       | distribution of the as-prepared 0D Tpy <sub>2</sub> PbI <sub>6</sub> , 1D Tpy <sub>4</sub> Pb <sub>5</sub> I <sub>18</sub> and 1D Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6</sub> |
|       | single crystals.                                                                                                                                                                  |
| S7    | . Dark current-voltage curves of 0D Tpy <sub>2</sub> PbI <sub>6</sub> 1D Tpy <sub>4</sub> Pb <sub>5</sub> I <sub>18</sub> and 1D Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6</sub>  |
|       | single crystals.                                                                                                                                                                  |
| S8    | UPS cutoff spectra of 0D Tpy <sub>2</sub> PbI <sub>6</sub> 1D Tpy <sub>4</sub> Pb <sub>5</sub> I <sub>18</sub> and 1D Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6</sub> single      |
|       | crystals.                                                                                                                                                                         |
| S8    | Details of X-ray crystallographic parameters of 0D Tpy <sub>2</sub> PbI <sub>6</sub> , 1D Tpy <sub>4</sub> Pb <sub>5</sub> I <sub>18</sub> and                                    |
|       | 1D Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6</sub> Single Crystals.                                                                                                               |
| S9    | Details of atoms occupation situation of Tpy <sub>2</sub> PbI <sub>6</sub> .                                                                                                      |
| S10   | Bond length of Tpy <sub>2</sub> PbI <sub>6</sub> .                                                                                                                                |
| S10   | Bond Angles of $Tpy_2PbI_{6}$ .                                                                                                                                                   |
| S11   | Details of atoms occupation situation of Tpy <sub>4</sub> Pb <sub>5</sub> I <sub>18</sub> .                                                                                       |
| S13   | Bond length of $Tpy_4Pb_5I_{18}$ .                                                                                                                                                |
| S14   | Bond Angles of $Tpy_4Pb_5I_{18}$ .                                                                                                                                                |
| S16   | . Details of atoms occupation situation of Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6</sub> .                                                                                      |
| S16   | Bond length of $Tpy_2Pb_3I_6$ .                                                                                                                                                   |
| S17   | . Bond Angles of Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6.</sub>                                                                                                                 |
| S18   | References                                                                                                                                                                        |

#### **Experimental section**

2,2:6,2-terpyridine (Tpy, J&K, >98%), PbI<sub>2</sub> (Aladdin, 99.9%), HI (Aladdin, 55.0 - 58.0%, with ≤1.5 % H<sub>3</sub>PO<sub>2</sub> stabilizer), acetonitrile (Aladdin, 99.9%).

#### Growth of Tpy<sub>2</sub>PbI<sub>6</sub> Single Crystals

0.233g Tpy and 0.0215 g PbI<sub>2</sub> were dissolved in a hydrothermal kettle containing 1mL of water, 2 mL of HI solution and 3 mL of acetonitrile. The mixture was placed on a heating table, heated to 170 °C and held at this temperature for 10hs to completely dissolve the starting materials. The solution was then cooled from 170 to 110 °C at a rate of 4 °C/h, from 110 °C to 60 °C at a rate of 1 °C/h and last from 60 to 30 °C at a rate of 2 °C/h. Finally, the black crystal was obtained.

#### Growth of Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> Single Crystals

0.233g Tpy and 0.215g PbI<sub>2</sub> were dissolved in a hydrothermal kettle containing 1mL of water, 2 mL of HI solution and 3 mL of acetonitrile. The mixture was placed on a heating table, heated to 140 °C and held at this temperature for 10hs to completely dissolve the starting materials. The solution was then cooled from 140 to 110 °C at a rate of 4 °C/h, from 110 °C to 60 °C at a rate of 1 °C/h and last from 60 to 30 °C at a rate of 2 °C/h. Finally, the red crystal was obtained.

#### Growth of Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> Single Crystals

0.233g Tpy and 0.215g  $PbI_2$  were dissolved in a hydrothermal kettle containing 1mL of water, 0.4 mL of HI solution and 3 mL of acetonitrile. The cooling process was the

same as above. Finally, the yellow crystal was obtained.

#### Characterizations

The determination of unit-cell parameters and data collections were performed on XtaLAB Synergy-i using the scan technique with Mo K $\alpha$  radiation ( $\lambda = 0.71073$ Å), for data collection at a temperature of 100(1) K. The single crystal structure was resolved and refined by SHELXT and OLEX2. 1-3 All H atoms were placed in geometrically calculated positions and refined using a riding model with C-H = 0.97 (methylene) and 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq (methyl C). X-ray photoelectron spectroscopy (XPS) and Ultraviolet photoelectron spectroscopy (UPS) spectra were measured with Thermo K-Alpha+. The single crystal structure was resolved and refined by SHELXT and OLEX2. 1-3 All H atoms were placed in geometrically calculated positions and refined using a riding model with C-H = 0.97(methylene) and 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq (methyl C). Xray photoelectron spectroscopy (XPS) and Ultraviolet photoelectron spectroscopy (UPS) spectra were measured with Thermo K-Alpha+. All XPS spectra were shifted to account for sample charging using inorganic carbon at 284.80 eV as a reference. UPS spectra were used the HeI (21.22eV) emission line. Due to unresolved probable disorder, similarity and rigid-bond restraints were necessary for the anisotropic displacement parameters of the single crystal. UV-vis spectra were measured by placing the corresponding thin films in a double-beam spectrophotometer equipped with an integrating sphere (UV-3600PLUS220/230VC, SHIMADZU).



**Fig. S1** XRD patterns of as-prepared 0D Tpy<sub>2</sub>PbI<sub>6</sub>, 1D Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> and 1D Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> single crystals.



Fig. S2 Region XPS spectra of I3d and C1s and the full XPS spectra in  $Tpy_2PbI_6$ ,  $Tpy_4Pb_5I_{18}$  and  $Tpy_2Pb_3I_6$  perovskite single crystals.



Fig. S3 UV-vis spectra of 0D Tpy<sub>2</sub>PbI<sub>6</sub>, 1D Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> and 1D Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> single crystals.



**Fig. S4** TGA/DSC curves of the as-prepared 0D Tpy<sub>2</sub>PbI<sub>6</sub>, 1D Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> and 1D Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> single crystals.



**Fig. S5** LUMO-associated charge distribution and HOMO-associated charge distribution of the as-prepared 0D Tpy<sub>2</sub>PbI<sub>6</sub>, 1D Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> and 1D Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> single crystals.



Fig. S6 Dark current-voltage curves of (a) 0D  $Tpy_2PbI_6$  (b) 1D  $Tpy_4Pb_5I_{18}$  and (c) 1D

Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub>single crystals. Trap density (Ntrap) and carrier mobility ( $\mu$ ) are evaluated based on space-charge-limited current (SCLC).



S7 (a-c) UPS cutoff spectra of 0D Tpy<sub>2</sub>PbI<sub>6</sub> 1D Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> and 1D Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> single crystals.
(d) Calculated band gap alignment of 0D Tpy<sub>2</sub>PbI<sub>6</sub> 1D Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> and 1D Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> single crystals.

# Table S1. Details of X-ray crystallographic parameters of 0D Tpy<sub>2</sub>PbI<sub>6</sub>, 1D Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub> and 1D Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub> Single Crystals.

| Crystal type<br>Parameter | Tpy <sub>2</sub> PbI <sub>6</sub> | Tpy4Pb5I18 | Tpy <sub>2</sub> Pb <sub>3</sub> I <sub>6</sub> |
|---------------------------|-----------------------------------|------------|-------------------------------------------------|
| CCDC NO.                  | 2081449                           | 2081451    | 2081450                                         |

| Formula weight                    | 1439.16 g/mol                                                                                                                                 | 4255.24 g/mol                                                                                                                                                    | 1849.50 g/mol                                                                                                                         |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Crystal system                    | monoclinic                                                                                                                                    | triclinic                                                                                                                                                        | orthorhombic                                                                                                                          |
| Space group                       | C 1 2/m 1                                                                                                                                     | P -1                                                                                                                                                             | Pbcn                                                                                                                                  |
| Unit-cell dimensions              | a = 13.0069(3)  Å<br>b = 14.6783(3)  Å<br>c = 10.1587(3)  Å<br>$\alpha = 90^{\circ}$<br>$\beta = 107.854^{\circ}(3)$<br>$\gamma = 90^{\circ}$ | a = 12.8492(2)  Å<br>b = 12.89296(18)  Å<br>c = 15.7151(2)  Å<br>$a = 86.4469^{\circ} (11)$<br>$\beta = 70.5166^{\circ} (13)$<br>$\gamma = 72.3962^{\circ} (13)$ | a = 22.4598(5)  Å<br>b = 12.1864(2)  Å<br>c = 14.4057(3)  Å<br>$\alpha = 90^{\circ}$<br>$\beta = 90^{\circ}$<br>$\gamma = 90^{\circ}$ |
| Volume                            | 1846.09(8) Å <sup>3</sup>                                                                                                                     | 2337.22(6) Å <sup>3</sup>                                                                                                                                        | 3942.90(15) Å <sup>3</sup>                                                                                                            |
| Z                                 | 2                                                                                                                                             | 1                                                                                                                                                                | 4                                                                                                                                     |
| ρ(calculated)                     | 2.589 g/cm3                                                                                                                                   | 3.023 g/cm3                                                                                                                                                      | 3.116 g/cm3                                                                                                                           |
| Absorption coefficient            | 9.616                                                                                                                                         | 14.958                                                                                                                                                           | 17.506                                                                                                                                |
| F(000)                            | 1296                                                                                                                                          | 1854                                                                                                                                                             | 3232                                                                                                                                  |
| Crystal size<br>max/mid/min       | 0.2×0.2×0.1mm <sup>3</sup>                                                                                                                    | 0.2×0.2×0.1mm <sup>3</sup>                                                                                                                                       | 0.2×0.2×0.1mm <sup>3</sup>                                                                                                            |
| Radiation                         | ΜοΚα(λ=0.71073<br>)                                                                                                                           | ΜοΚα(λ=0.71073)                                                                                                                                                  | ΜοΚα(λ=0.71073)                                                                                                                       |
|                                   | -16≤h≤16,                                                                                                                                     | -15≤h≤16,                                                                                                                                                        | -28≤h≤28,                                                                                                                             |
| Index ranges                      | -18≤k≤16,                                                                                                                                     | -16≤k≤16,                                                                                                                                                        | -15≤k≤15,                                                                                                                             |
|                                   | -13≤l≤13                                                                                                                                      | -19≤l≤20                                                                                                                                                         | -17≤l≤18                                                                                                                              |
| Reflections collected             | 18696                                                                                                                                         | 44481                                                                                                                                                            | 30343                                                                                                                                 |
| Independent reflections           | 2095[Rint=0.029,                                                                                                                              | 9900 [Rint=0.0325,                                                                                                                                               | 4243 [Rint=0.0273,                                                                                                                    |
|                                   | Rsigna=0.0349]                                                                                                                                | Rsigna=0.0530]                                                                                                                                                   | Rsigna=0.0452]                                                                                                                        |
| Data/restraints/<br>parameters    | 2095/0/110                                                                                                                                    | 9900 /0/445                                                                                                                                                      | 4243/0/208                                                                                                                            |
| Final R indexes<br>[I>=2σ(I)]     | R1=0.0292,<br>wR2=0.0687                                                                                                                      | R1=0.0329,<br>wR2=0.0614                                                                                                                                         | R1=0.0273,<br>wR2=0.0445                                                                                                              |
| Final R indexes [all data]        | R1=0.0349,<br>wR2=0.0709                                                                                                                      | R1=0.0535,<br>wR2=0.0666                                                                                                                                         | R1=0.0452,<br>wR2=0.0489                                                                                                              |
| Goodness-of-fit on F <sup>2</sup> | 1.073                                                                                                                                         | 0.983                                                                                                                                                            | 1.085                                                                                                                                 |
| Largest difference map peak/hole  | 1.271/-1.405e Å <sup>-3</sup>                                                                                                                 | 0.762/-1.246e Å- <sup>3</sup>                                                                                                                                    | 1.116/-1.323e Å <sup>-3</sup>                                                                                                         |

# Table S2. Details of atoms occupation situation of Tpy<sub>2</sub>PbI<sub>6</sub>.

| Atom | X       | У       | Z       | Occ. | U       | Site | Sym. |
|------|---------|---------|---------|------|---------|------|------|
| Pb01 | 0.5     | 0.5     | 0.5     | 1    | 0.03974 | 2c   | 2/m  |
| 1002 | 0.75977 | 0.5     | 0.52831 | 1    | 0.04605 | 4i   | m    |
| 1003 | 0.43368 | 0.5     | 0.17671 | 1    | 0.05428 | 4i   | m    |
| 1004 | 0.5     | 0.27497 | 0.5     | 1    | 0.06287 | 4h   | 2    |
| N005 | 0.8614  | 0.5     | 0.9641  | 1    | 0.0384  | 4i   | m    |
| N006 | 0.8166  | 0.6494  | 0.8118  | 1    | 0.0498  | 8j   | 1    |
| C007 | 0.8562  | 0.6616  | 0.9493  | 1    | 0.0439  | 8j   | 1    |
| C008 | 0.8773  | 0.579   | 1.0351  | 1    | 0.0421  | 8j   | 1    |

| C009 | 0.928    | 0.5      | 1.248    | 1 | 0.068  | 4i | m |
|------|----------|----------|----------|---|--------|----|---|
| H009 | 0.951182 | 0.500001 | 1.344175 | 1 | 0.082  | 6  |   |
| C00A | 0.8767   | 0.75     | 0.995    | 1 | 0.0568 | 8j | 1 |
| H00A | 0.903454 | 0.761902 | 1.089304 | 1 | 0.068  | 8j | 1 |
| C00B | 0.9112   | 0.5819   | 1.1786   | 1 | 0.0579 | 8j | 1 |
| H00B | 0.92224  | 0.637045 | 1.225971 | 1 | 0.069  | 8j | 1 |
| C00C | 0.8181   | 0.8051   | 0.7629   | 1 | 0.0649 | 8j | 1 |
| H00C | 0.805684 | 0.85275  | 0.699706 | 1 | 0.078  | 8j | 1 |
| C00D | 0.7972   | 0.717    | 0.7194   | 1 | 0.0626 | 8j | 1 |
| H00D | 0.769343 | 0.704138 | 0.625533 | 1 | 0.075  | 8j | 1 |
| C00E | 0.8579   | 0.8211   | 0.9016   | 1 | 0.0625 | 8j | 1 |
| H00E | 0.872392 | 0.880593 | 0.933613 | 1 | 0.075  | 8j | 1 |
| H006 | 0.798    | 0.6      | 0.778    | 1 | 0.056  | 8j | 1 |

# Table S3. Bond length of Tpy<sub>2</sub>PbI<sub>6</sub>.

| Atom | Atom | Length/ Å | Atom | Atom | Length/ Å |
|------|------|-----------|------|------|-----------|
| Pb01 | 1002 | 3.3020(5) | C008 | C00B | 1.388(7)  |
| Pb01 | 1002 | 3.3019(5) | C009 | H009 | 0.93      |
| Pb01 | 1003 | 3.1294(4) | C009 | C00B | 1.377(7)  |
| Pb01 | 1003 | 3.1294(4) | C009 | C00B | 1.377(7)  |
| Pb01 | 1004 | 3.3030(5) | C00A | H00A | 0.93      |
| Pb01 | 1004 | 3.3031(5) | C00A | C00E | 1.381(8)  |
| N005 | C008 | 1.348(6)  | C00B | H00B | 0.93      |
| N005 | C008 | 1.348(6)  | C00C | H00C | 0.93      |
| N006 | C007 | 1.345(6)  | C00C | C00D | 1.366(8)  |
| N006 | C00D | 1.335(7)  | C00C | C00E | 1.364(8)  |
| N006 | H006 | 0.80(6)   | C00D | H00D | 0.93      |
| C007 | C008 | 1.469(8)  | C00E | H00E | 0.93      |
| C007 | C00A | 1.376(7)  |      |      |           |

## Table S4. Bond Angles of Tpy<sub>2</sub>PbI<sub>6</sub>.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°  |
|------|------|------|------------|------|------|------|----------|
| 1002 | Pb01 | 1002 | 180        | N005 | C008 | C007 | 115.0(4) |
| 1002 | Pb01 | 1004 | 90         | N005 | C008 | C00B | 122.4(5) |
| 1002 | Pb01 | 1004 | 90         | C00B | C008 | C007 | 122.6(5) |
| 1002 | Pb01 | 1004 | 90         | C00B | C009 | H009 | 119.2    |
| 1002 | Pb01 | 1004 | 90         | C00B | C009 | H009 | 119.2    |
| 1003 | Pb01 | 1002 | 87.887(12) | C00B | C009 | C00B | 121.7(7) |
| 1003 | Pb01 | 1002 | 87.887(12) | C007 | C00A | H00A | 119.8    |
| 1003 | Pb01 | 1002 | 92.112(12) | C007 | C00A | C00E | 120.4(5) |
| 1003 | Pb01 | 1002 | 92.113(12) | C00E | C00A | H00A | 119.8    |
| 1003 | Pb01 | 1003 | 180        | C008 | C00B | H00B | 121.3    |
| 1003 | Pb01 | 1004 | 90         | C009 | C00B | C008 | 117.4(6) |

| 1003 | Pb01 | 1004 | 90       | C009 | C00B | H00B | 121.3    |
|------|------|------|----------|------|------|------|----------|
| 1003 | Pb01 | 1004 | 90       | C00D | C00C | H00C | 120.9    |
| 1003 | Pb01 | 1004 | 90       | C00E | C00C | H00C | 120.9    |
| 1004 | Pb01 | 1004 | 180      | C00E | C00C | C00D | 118.2(6) |
| C008 | N005 | C008 | 118.7(6) | N006 | C00D | C00C | 120.0(6) |
| C007 | N006 | H006 | 122(4)   | N006 | C00D | H00D | 120      |
| C00D | N006 | C007 | 124.1(5) | C00C | C00D | H00D | 120      |
| C00D | N006 | H006 | 114(4)   | C00A | C00E | H00E | 119.7    |
| N006 | C007 | C008 | 116.7(4) | C00C | C00E | C00A | 120.6(5) |
| N006 | C007 | C00A | 116.7(5) | C00C | C00E | H00E | 119.7    |
| C00A | C007 | C008 | 126.6(5) |      |      |      |          |

| Table S5. Details of atoms occupation situation of T | py <sub>4</sub> Pb <sub>5</sub> I <sub>18</sub> |
|------------------------------------------------------|-------------------------------------------------|
|------------------------------------------------------|-------------------------------------------------|

| Atom | x     | у      | z     | Occ. | U     | Site | Sym. |
|------|-------|--------|-------|------|-------|------|------|
| Pb01 | 1.000 | 0.500  | 1.000 | 1    | 0.038 | 1c   | -1   |
| Pb02 | 0.835 | 0.097  | 0.710 | 1    | 0.040 | 2i   | 1    |
| Pb03 | 0.927 | 0.284  | 0.862 | 1    | 0.039 | 2i   | 1    |
| 1004 | 0.941 | 0.302  | 0.658 | 1    | 0.049 | 2i   | 1    |
| 1005 | 0.815 | 0.548  | 0.893 | 1    | 0.044 | 2i   | 1    |
| 1006 | 1.080 | 0.711  | 0.930 | 1    | 0.050 | 2i   | 1    |
| 1007 | 0.739 | -0.102 | 0.763 | 1    | 0.049 | 2i   | 1    |
| 1008 | 0.624 | 0.192  | 0.636 | 1    | 0.050 | 2i   | 1    |
| 1009 | 1.167 | 0.343  | 0.822 | 1    | 0.053 | 2i   | 1    |
| I00A | 1.028 | 0.027  | 0.815 | 1    | 0.059 | 2i   | 1    |
| I00B | 0.500 | 0.500  | 0.500 | 1    | 0.059 | 1h   | -1   |
| I00C | 0.682 | 0.237  | 0.899 | 1    | 0.059 | 2i   | 1    |
| I00D | 1.000 | 0.000  | 0.500 | 1    | 0.066 | 1b   | -1   |
| N00E | 0.712 | 0.489  | 0.599 | 1    | 0.031 | 2i   | 1    |
| N00F | 0.805 | 0.336  | 0.467 | 1    | 0.039 | 2i   | 1    |
| N00G | 0.458 | 0.920  | 0.712 | 1    | 0.040 | 2i   | 1    |
| N00H | 0.522 | 0.474  | 0.721 | 1    | 0.049 | 2i   | 1    |
| N00I | 0.433 | 1.052  | 0.847 | 1    | 0.069 | 2i   | 1    |
| C00J | 0.674 | 0.555  | 0.674 | 1    | 0.035 | 2i   | 1    |
| N00K | 0.638 | 0.918  | 0.563 | 1    | 0.056 | 2i   | 1    |
| H00K | 0.626 | 0.948  | 0.614 | 1    | 0.068 | 2i   | 1    |
| C00L | 0.262 | 1.024  | 0.938 | 1    | 0.058 | 2i   | 1    |
| H00L | 0.205 | 0.988  | 0.952 | 1    | 0.069 | 2i   | 1    |
| C00M | 0.840 | 0.426  | 0.451 | 1    | 0.038 | 2i   | 1    |
| C00O | 0.799 | 0.505  | 0.529 | 1    | 0.035 | 2i   | 1    |
| C00P | 0.720 | 0.637  | 0.680 | 1    | 0.046 | 2i   | 1    |
| H00P | 0.693 | 0.680  | 0.733 | 1    | 0.055 | 2i   | 1    |
| C00Q | 0.910 | 0.262  | 0.322 | 1    | 0.058 | 2i   | 1    |

| H00Q | 0.934 | 0.206 | 0.279 | 1 | 0.069 | 2i | 1 |
|------|-------|-------|-------|---|-------|----|---|
| C00R | 0.377 | 0.916 | 0.791 | 1 | 0.041 | 2i | 1 |
| C00S | 0.334 | 1.156 | 0.981 | 1 | 0.073 | 2i | 1 |
| H00S | 0.328 | 1.209 | 1.021 | 1 | 0.087 | 2i | 1 |
| C00U | 0.806 | 0.653 | 0.606 | 1 | 0.056 | 2i | 1 |
| H00U | 0.837 | 0.709 | 0.608 | 1 | 0.067 | 2i | 1 |
| C00V | 0.913 | 0.435 | 0.367 | 1 | 0.054 | 2i | 1 |
| H00V | 0.939 | 0.496 | 0.353 | 1 | 0.065 | 2i | 1 |
| C00W | 0.576 | 0.534 | 0.745 | 1 | 0.037 | 2i | 1 |
| C00X | 0.480 | 0.849 | 0.646 | 1 | 0.042 | 2i | 1 |
| C00Y | 0.423 | 0.770 | 0.657 | 1 | 0.055 | 2i | 1 |
| H00Y | 0.441 | 0.720 | 0.610 | 1 | 0.066 | 2i | 1 |
| C5   | 0.847 | 0.587 | 0.529 | 1 | 0.050 | 2i | 1 |
| Н5   | 0.905 | 0.598 | 0.478 | 1 | 0.060 | 2i | 1 |
| C7   | 0.948 | 0.351 | 0.301 | 1 | 0.062 | 2i | 1 |
| H7   | 0.997 | 0.356 | 0.244 | 1 | 0.075 | 2i | 1 |
| C9   | 0.356 | 0.997 | 0.859 | 1 | 0.043 | 2i | 1 |
| C13  | 0.430 | 0.447 | 0.777 | 1 | 0.064 | 2i | 1 |
| H13  | 0.396 | 0.405 | 0.755 | 1 | 0.076 | 2i | 1 |
| C14  | 0.724 | 0.933 | 0.491 | 1 | 0.074 | 2i | 1 |
| H14  | 0.769 | 0.976 | 0.495 | 1 | 0.088 | 2i | 1 |
| C15  | 0.591 | 0.806 | 0.481 | 1 | 0.075 | 2i | 1 |
| H15  | 0.548 | 0.761 | 0.479 | 1 | 0.090 | 2i | 1 |
| C17  | 0.388 | 0.482 | 0.865 | 1 | 0.061 | 2i | 1 |
| H17  | 0.324 | 0.465 | 0.905 | 1 | 0.073 | 2i | 1 |
| C18  | 0.253 | 1.105 | 0.998 | 1 | 0.071 | 2i | 1 |
| H18  | 0.189 | 1.123 | 1.051 | 1 | 0.085 | 2i | 1 |
| C21  | 0.571 | 0.857 | 0.561 | 1 | 0.047 | 2i | 1 |
| C22  | 0.837 | 0.256 | 0.407 | 1 | 0.049 | 2i | 1 |
| H22  | 0.809 | 0.196 | 0.422 | 1 | 0.058 | 2i | 1 |
| C24  | 0.424 | 1.129 | 0.903 | 1 | 0.088 | 2i | 1 |
| H24  | 0.480 | 1.165 | 0.889 | 1 | 0.106 | 2i | 1 |
| C25  | 0.535 | 0.570 | 0.836 | 1 | 0.055 | 2i | 1 |
| H25  | 0.572 | 0.611 | 0.856 | 1 | 0.066 | 2i | 1 |
| C27  | 0.675 | 0.822 | 0.404 | 1 | 0.096 | 2i | 1 |
| H27  | 0.687 | 0.790 | 0.349 | 1 | 0.115 | 2i | 1 |
| C28  | 0.743 | 0.885 | 0.410 | 1 | 0.076 | 2i | 1 |
| H28  | 0.801 | 0.894 | 0.359 | 1 | 0.091 | 2i | 1 |
| C32  | 0.441 | 0.544 | 0.895 | 1 | 0.066 | 2i | 1 |
| H32  | 0.413 | 0.568 | 0.955 | 1 | 0.080 | 2i | 1 |
| C1   | 0.318 | 0.840 | 0.807 | 1 | 0.057 | 2i | 1 |
| H1   | 0.264 | 0.838 | 0.863 | 1 | 0.068 | 2i | 1 |
| C8   | 0.340 | 0.768 | 0.738 | 1 | 0.066 | 2i | 1 |

| H8   | 0.299 | 0.718 | 0.747 | 1 | 0.079 | 2i | 1 |
|------|-------|-------|-------|---|-------|----|---|
| H00I | 0.489 | 1.041 | 0.796 | 1 | 0.022 | 2i | 1 |
| H00F | 0.762 | 0.329 | 0.513 | 1 | 0.060 | 2i | 1 |
| H00H | 0.545 | 0.444 | 0.658 | 1 | 0.090 | 2i | 1 |

## Table S6.Bond length of Tpy4Pb5I18.

| Atom | Atom | Length/ Å | Atom | Atom | Length/ Å |
|------|------|-----------|------|------|-----------|
| Pb01 | 1005 | 3.2433(4) | C00P | H00P | 0.93      |
| Pb01 | 1005 | 3.2433(4) | C00P | C00U | 1.366(8)  |
| Pb01 | 1006 | 3.1998(4) | C00Q | H00Q | 0.93      |
| Pb01 | 1006 | 3.1998(4) | C00Q | C7   | 1.352(9)  |
| Pb01 | 1009 | 3.2510(4) | C00Q | C22  | 1.369(8)  |
| Pb01 | 1009 | 3.2510(4) | C00R | С9   | 1.452(8)  |
| Pb02 | 1004 | 3.2615(5) | C00R | C1   | 1.374(8)  |
| Pb02 | 1007 | 3.1255(5) | C00S | H00S | 0.93      |
| Pb02 | 1008 | 3.1802(5) | C00S | C18  | 1.348(10) |
| Pb02 | I00A | 3.2980(5) | C00S | C24  | 1.348(9)  |
| Pb02 | I00C | 3.2501(5) | C00U | H00U | 0.93      |
| Pb02 | I00D | 3.3438(2) | C00U | C5   | 1.383(8)  |
| Pb03 | 1004 | 3.1560(5) | C00V | H00V | 0.93      |
| Pb03 | 1005 | 3.2613(5) | C00V | C7   | 1.404(8)  |
| Pb03 | 1006 | 3.2445(5) | C00W | C25  | 1.405(8)  |
| Pb03 | 1009 | 3.2526(5) | C00X | C00Y | 1.402(8)  |
| Pb03 | I00A | 3.2135(5) | C00X | C21  | 1.480(8)  |
| Pb03 | I00C | 3.2438(5) | C00Y | H00Y | 0.93      |
| N00E | С00Ј | 1.347(6)  | C00Y | C8   | 1.370(9)  |
| N00E | C00O | 1.339(6)  | C5   | Н5   | 0.93      |
| N00F | C00M | 1.337(7)  | C7   | H7   | 0.93      |
| N00F | C22  | 1.325(7)  | C13  | H13  | 0.93      |
| N00F | H00F | 0.76(5)   | C13  | C17  | 1.365(8)  |
| N00G | C00R | 1.338(7)  | C14  | H14  | 0.93      |
| N00G | C00X | 1.325(7)  | C14  | C28  | 1.361(9)  |
| N00H | C00W | 1.332(7)  | C15  | H15  | 0.93      |
| N00H | C13  | 1.339(8)  | C15  | C21  | 1.362(8)  |
| N00H | Н00Н | 0.99(6)   | C15  | C27  | 1.380(10) |
| N00I | C9   | 1.337(8)  | C17  | H17  | 0.93      |
| N00I | C24  | 1.330(8)  | C17  | C32  | 1.377(9)  |
| N00I | H00I | 0.86(5)   | C18  | H18  | 0.93      |
| C00J | C00P | 1.380(7)  | C22  | H22  | 0.93      |
| C00J | C00W | 1.459(8)  | C24  | H24  | 0.93      |
| N00K | H00K | 0.86      | C25  | H25  | 0.93      |
| N00K | C14  | 1.351(7)  | C25  | C32  | 1.375(9)  |
| N00K | C21  | 1.333(7)  | C27  | H27  | 0.93      |

| C00L | H00L | 0.93     | C27 | C28 | 1.375(10) |
|------|------|----------|-----|-----|-----------|
| C00L | С9   | 1.388(8) | C28 | H28 | 0.93      |
| C00L | C18  | 1.398(9) | C32 | H32 | 0.93      |
| C00M | C00O | 1.484(8) | C1  | H1  | 0.93      |
| C00M | C00V | 1.366(7) | C1  | C8  | 1.364(8)  |
| C00O | C5   | 1.387(7) | C8  | H8  | 0.93      |

# Table S7. Bond Angles of Tpy<sub>4</sub>Pb<sub>5</sub>I<sub>18</sub>.

| Atom | Atom | Atom | Angle/°     | Atom | Atom | Atom | Angle/°  |
|------|------|------|-------------|------|------|------|----------|
| 1005 | Pb01 | 1005 | 180         | C00J | C00P | H00P | 120.9    |
| 1005 | Pb01 | 1009 | 82.928(11)  | C00U | C00P | C00J | 118.2(6) |
| 1005 | Pb01 | 1009 | 97.073(11)  | C00U | C00P | H00P | 120.9    |
| 1005 | Pb01 | 1009 | 97.072(11)  | C7   | C00Q | H00Q | 120.3    |
| 1005 | Pb01 | 1009 | 82.928(11)  | C7   | C00Q | C22  | 119.5(6) |
| 1006 | Pb01 | 1005 | 93.865(11)  | C22  | C00Q | H00Q | 120.3    |
| 1006 | Pb01 | 1005 | 93.866(11)  | N00G | C00R | С9   | 115.0(6) |
| 1006 | Pb01 | 1005 | 86.135(11)  | N00G | C00R | C1   | 123.0(6) |
| 1006 | Pb01 | 1005 | 86.134(11)  | C1   | C00R | С9   | 122.0(6) |
| 1006 | Pb01 | 1006 | 180         | C18  | C00S | H00S | 121      |
| 1006 | Pb01 | 1009 | 83.660(11)  | C18  | C00S | C24  | 118.1(7) |
| 1006 | Pb01 | 1009 | 83.659(11)  | C24  | C00S | H00S | 121      |
| 1006 | Pb01 | 1009 | 96.340(11)  | C00P | C00U | H00U | 119.8    |
| 1006 | Pb01 | 1009 | 96.341(11)  | C00P | C00U | C5   | 120.4(6) |
| 1009 | Pb01 | 1009 | 180         | C5   | C00U | H00U | 119.8    |
| 1004 | Pb02 | I00A | 81.587(13)  | C00M | C00V | H00V | 120.6    |
| 1004 | Pb02 | I00D | 85.386(9)   | C00M | C00V | C7   | 118.9(6) |
| 1007 | Pb02 | 1004 | 178.352(14) | C7   | C00V | H00V | 120.6    |
| 1007 | Pb02 | 1008 | 85.009(13)  | N00H | C00W | C00J | 116.3(5) |
| 1007 | Pb02 | I00A | 96.765(13)  | N00H | C00W | C25  | 117.2(6) |
| 1007 | Pb02 | I00C | 95.715(13)  | C25  | C00W | C00J | 126.5(6) |
| 1007 | Pb02 | I00D | 94.920(10)  | N00G | C00X | C00Y | 122.8(6) |
| 1008 | Pb02 | 1004 | 96.622(13)  | N00G | C00X | C21  | 115.5(6) |
| 1008 | Pb02 | I00A | 170.465(14) | C00Y | C00X | C21  | 121.7(6) |
| 1008 | Pb02 | I00C | 89.468(13)  | C00X | C00Y | H00Y | 121.2    |
| 1008 | Pb02 | I00D | 88.108(10)  | C8   | C00Y | C00X | 117.6(6) |
| I00A | Pb02 | I00D | 101.039(11) | C8   | C00Y | H00Y | 121.2    |
| I00C | Pb02 | I004 | 84.079(13)  | C00O | C5   | Н5   | 121.1    |
| I00C | Pb02 | I00A | 81.039(13)  | C00U | C5   | C00O | 117.9(6) |
| I00C | Pb02 | I00D | 168.844(12) | C00U | C5   | Н5   | 121.1    |
| 1004 | Pb03 | 1005 | 90.254(12)  | C00Q | C7   | C00V | 120.2(6) |
| 1004 | Pb03 | 1006 | 174.075(13) | C00Q | C7   | H7   | 119.9    |
| 1004 | Pb03 | 1009 | 92.829(13)  | C00V | C7   | H7   | 119.9    |
| 1004 | Pb03 | I00A | 84.568(13)  | N00I | C9   | C00L | 116.4(6) |

| 1004 | Pb03 | 100C | 85.885(13)  | N00I | C9  | C00R | 118.2(6) |
|------|------|------|-------------|------|-----|------|----------|
| 1006 | Pb03 | 1005 | 85.108(12)  | C00L | C9  | C00R | 125.5(6) |
| 1006 | Pb03 | 1009 | 82.934(12)  | N00H | C13 | H13  | 120.6    |
| 1009 | Pb03 | 1005 | 82.624(12)  | N00H | C13 | C17  | 118.7(7) |
| I00A | Pb03 | 1005 | 174.358(13) | C17  | C13 | H13  | 120.6    |
| I00A | Pb03 | 1006 | 100.201(13) | N00K | C14 | H14  | 121.2    |
| I00A | Pb03 | 1009 | 99.832(14)  | N00K | C14 | C28  | 117.7(7) |
| I00A | Pb03 | 100C | 82.425(13)  | C28  | C14 | H14  | 121.2    |
| I00C | Pb03 | 1005 | 94.995(13)  | C21  | C15 | H15  | 120.2    |
| I00C | Pb03 | 1006 | 98.172(13)  | C21  | C15 | C27  | 119.7(8) |
| I00C | Pb03 | 1009 | 177.297(14) | C27  | C15 | H15  | 120.2    |
| Pb03 | 1004 | Pb02 | 80.601(11)  | C13  | C17 | H17  | 120.3    |
| Pb01 | 1005 | Pb03 | 78.626(10)  | C13  | C17 | C32  | 119.3(7) |
| Pb01 | 1006 | Pb03 | 79.505(10)  | C32  | C17 | H17  | 120.3    |
| Pb01 | 1009 | Pb03 | 78.641(10)  | C00L | C18 | H18  | 119.2    |
| Pb03 | I00A | Pb02 | 79.210(12)  | C00S | C18 | C00L | 121.5(7) |
| Pb03 | I00C | Pb02 | 79.479(11)  | C00S | C18 | H18  | 119.2    |
| Pb02 | I00D | Pb02 | 180         | N00K | C21 | C00X | 117.4(5) |
| C00O | N00E | C00J | 117.7(5)    | N00K | C21 | C15  | 118.6(7) |
| C00M | N00F | H00F | 122(5)      | C15  | C21 | C00X | 124.0(7) |
| C22  | N00F | C00M | 124.5(6)    | N00F | C22 | C00Q | 118.8(6) |
| C22  | N00F | H00F | 113(5)      | N00F | C22 | H22  | 120.6    |
| C00X | N00G | C00R | 117.8(5)    | C00Q | C22 | H22  | 120.6    |
| C00W | N00H | C13  | 125.0(6)    | N00I | C24 | C00S | 120.5(8) |
| C00W | N00H | H00H | 123(4)      | N00I | C24 | H24  | 119.7    |
| C13  | N00H | H00H | 112(4)      | C00S | C24 | H24  | 119.7    |
| C9   | N00I | H00I | 118(3)      | C00W | C25 | H25  | 120.4    |
| C24  | N00I | C9   | 124.6(7)    | C32  | C25 | C00W | 119.2(7) |
| C24  | N00I | H00I | 117(3)      | C32  | C25 | H25  | 120.4    |
| N00E | C00J | C00P | 123.1(6)    | C15  | C27 | H27  | 120.3    |
| N00E | C00J | C00W | 113.5(5)    | C28  | C27 | C15  | 119.5(7) |
| C00P | C00J | C00W | 123.4(6)    | C28  | C27 | H27  | 120.3    |
| C14  | N00K | H00K | 118         | C14  | C28 | C27  | 120.4(7) |
| C21  | N00K | H00K | 118         | C14  | C28 | H28  | 119.8    |
| C21  | N00K | C14  | 124.1(6)    | C27  | C28 | H28  | 119.8    |
| C9   | C00L | H00L | 120.5       | C17  | C32 | H32  | 119.7    |
| C9   | C00L | C18  | 118.9(7)    | C25  | C32 | C17  | 120.6(7) |
| C18  | C00L | H00L | 120.5       | C25  | C32 | H32  | 119.7    |
| N00F | C00M | C00O | 116.2(5)    | C00R | C1  | H1   | 120.7    |
| N00F | C00M | C00V | 118.0(6)    | C8   | C1  | C00R | 118.7(7) |
| C00V | C00M | C000 | 125.8(6)    | C8   | C1  | H1   | 120.7    |
| N00E | C00O | C00M | 114.7(5)    | C00Y | C8  | H8   | 120      |
| N00E | C00O | C5   | 122.8(6)    | C1   | C8  | C00Y | 120.0(7) |

| C5 | C00O | C00M | 122.5(6) | C1 | C8 | H8 | 120 |
|----|------|------|----------|----|----|----|-----|
|    |      |      |          |    |    |    |     |

| Atom | x       | у       | z       | Occ. | U       | Site | Sym. |
|------|---------|---------|---------|------|---------|------|------|
| Pb1  | 0.58940 | 0.34888 | 0.45787 | 1    | 0.03180 | 8d   | 1    |
| Pb2  | 0.5     | 0.58256 | 0.25    | 1    | 0.04036 | 4c   | .2.  |
| 13   | 0.55724 | 0.63250 | 0.44941 | 1    | 0.0353  | 8d   | 1    |
| I4   | 0.60842 | 0.25396 | 0.66613 | 1    | 0.03980 | 8d   | 1    |
| 15   | 0.59790 | 0.38786 | 0.23840 | 1    | 0.04955 | 8d   | 1    |
| N17  | 0.69641 | 0.4192  | 0.4929  | 1    | 0.0332  | 8d   | 1    |
| N6   | 0.67482 | 0.2178  | 0.4171  | 1    | 0.0299  | 8d   | 1    |
| C12  | 0.7426  | 0.3526  | 0.4775  | 1    | 0.0339  | 8d   | 1    |
| C7   | 0.7316  | 0.2550  | 0.4201  | 1    | 0.0367  | 8d   | 1    |
| C11  | 0.6631  | 0.1252  | 0.3713  | 1    | 0.0330  | 8d   | 1    |
| C10  | 0.7072  | 0.0691  | 0.3233  | 1    | 0.0500  | 8d   | 1    |
| H10  | 0.69821 | 0.00461 | 0.29181 | 1    | 0.06    | 8d   | 1    |
| N19  | 0.55889 | 0.1580  | 0.3996  | 1    | 0.0355  | 8d   | 1    |
| C9   | 0.7644  | 0.1097  | 0.3229  | 1    | 0.0544  | 8d   | 1    |
| Н9   | 0.7942  | 0.07425 | 0.28965 | 1    | 0.065   | 8d   | 1    |
| C16  | 0.7041  | 0.5087  | 0.5457  | 1    | 0.0427  | 8d   | 1    |
| H16  | 0.67171 | 0.55414 | 0.55741 | 1    | 0.051   | 8d   | 1    |
| C8   | 0.7765  | 0.2024  | 0.3716  | 1    | 0.0495  | 8d   | 1    |
| H8   | 0.81495 | 0.23056 | 0.37245 | 1    | 0.059   | 8d   | 1    |
| C13  | 0.7981  | 0.3735  | 0.5151  | 1    | 0.0578  | 8d   | 1    |
| H13  | 0.82971 | 0.32582 | 0.50462 | 1    | 0.069   | 8d   | 1    |
| C15  | 0.7588  | 0.5355  | 0.5831  | 1    | 0.0566  | 8d   | 1    |
| H15  | 0.76380 | 0.5992  | 0.61772 | 1    | 0.068   | 8d   | 1    |
| C18  | 0.6008  | 0.0856  | 0.3749  | 1    | 0.0333  | 8d   | 1    |
| C20  | 0.5020  | 0.1249  | 0.4008  | 1    | 0.0514  | 8d   | 1    |
| H20  | 0.47272 | 0.17566 | 0.41620 | 1    | 0.062   | 8d   | 1    |
| C14  | 0.8055  | 0.4652  | 0.5676  | 1    | 0.069   | 8d   | 1    |
| H14  | 0.841   | 0.483   | 0.587   | 1    | 0.083   | 8d   | 1    |
| C21  | 0.4851  | 0.0191  | 0.3804  | 1    | 0.0576  | 8d   | 1    |
| H21  | 0.44516 | -0.0011 | 0.38194 | 1    | 0.069   | 8d   | 1    |
| C1   | 0.5863  | -0.0221 | 0.3549  | 1    | 0.0470  | 8d   | 1    |
| H1   | 0.61600 | -0.072  | 0.33957 | 1    | 0.056   | 8d   | 1    |
| C2   | 0.5279  | -0.0553 | 0.3578  | 1    | 0.0561  | 8d   | 1    |
| H2   | 0.51777 | -0.1276 | 0.34446 | 1    | 0.067   | 8d   | 1    |

# Table S8. Details of atoms occupation situation of Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub>.

# Table S9. Bond length of Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub>.

| Atom | Atom | Length/ Å | Atom | Atom | Length/ Å |
|------|------|-----------|------|------|-----------|
| Pb1  | I4   | 3.2436(4) | C10  | С9   | 1.375(8)  |
| Pb1  | 15   | 3.2028(4) | N19  | C18  | 1.338(6)  |

| Pb1 | N17 | 2.601(4)  | N19 | C20 | 1.339(6) |
|-----|-----|-----------|-----|-----|----------|
| Pb1 | N6  | 2.565(4)  | C9  | H9  | 0.93     |
| Pb1 | N19 | 2.566(4)  | C9  | C8  | 1.358(8) |
| Pb2 | 13  | 3.2055(4) | C16 | H16 | 0.93     |
| Pb2 | 13  | 3.2055(4) | C16 | C15 | 1.379(8) |
| Pb2 | I4  | 3.3702(4) | C8  | H8  | 0.93     |
| Pb2 | I4  | 3.3702(4) | C13 | H13 | 0.93     |
| Pb2 | 15  | 3.2393(4) | C13 | C14 | 1.360(9) |
| Pb2 | 15  | 3.2393(4) | C15 | H15 | 0.93     |
| N17 | C12 | 1.336(6)  | C15 | C14 | 1.372(9) |
| N17 | C16 | 1.341(6)  | C18 | C1  | 1.383(7) |
| N6  | C7  | 1.354(6)  | C20 | H20 | 0.93     |
| N6  | C11 | 1.334(6)  | C20 | C21 | 1.377(7) |
| C12 | C7  | 1.469(7)  | C14 | H14 | 0.86(6)  |
| C12 | C13 | 1.382(7)  | C21 | H21 | 0.93     |
| C7  | C8  | 1.384(7)  | C21 | C2  | 1.362(8) |
| C11 | C10 | 1.387(7)  | C1  | H1  | 0.93     |
| C11 | C18 | 1.482(7)  | C1  | C2  | 1.372(8) |
| C10 | H10 | 0.93      | C2  | H2  | 0.93     |

## Table S10. Bond Angles of Tpy<sub>2</sub>Pb<sub>3</sub>I<sub>6</sub>.

| Atom | Atom | Atom | Angle/°     | Atom | Atom | Atom | Angle/°  |
|------|------|------|-------------|------|------|------|----------|
| 15   | Pb1  | I4   | 163.348(12) | C10  | C11  | C18  | 122.1(5) |
| N17  | Pb1  | I4   | 79.40(9)    | C11  | C10  | H10  | 120.3    |
| N17  | Pb1  | 15   | 95.04(9)    | C9   | C10  | C11  | 119.4(5) |
| N6   | Pb1  | I4   | 83.74(9)    | C9   | C10  | H10  | 120.3    |
| N6   | Pb1  | 15   | 79.74(9)    | C18  | N19  | Pb1  | 119.8(3) |
| N6   | Pb1  | N17  | 63.78(13)   | C18  | N19  | C20  | 118.4(4) |
| N6   | Pb1  | N19  | 63.92(13)   | C20  | N19  | Pb1  | 121.5(3) |
| N19  | Pb1  | I4   | 90.83(10)   | C10  | C9   | Н9   | 120.5    |
| N19  | Pb1  | 15   | 80.06(10)   | C8   | C9   | C10  | 118.9(5) |
| N19  | Pb1  | N17  | 127.50(13)  | C8   | C9   | Н9   | 120.5    |
| 13   | Pb2  | 13   | 158.111(16) | N17  | C16  | H16  | 119      |
| 13   | Pb2  | I4   | 81.738(9)   | N17  | C16  | C15  | 121.9(5) |
| 13   | Pb2  | I4   | 85.369(10)  | C15  | C16  | H16  | 119      |
| 13   | Pb2  | I4   | 85.368(10)  | C7   | C8   | H8   | 120      |
| 13   | Pb2  | I4   | 81.737(9)   | C9   | C8   | C7   | 120.0(5) |
| 13   | Pb2  | 15   | 111.413(10) | C9   | C8   | H8   | 120      |
| 13   | Pb2  | 15   | 85.010(10)  | C12  | C13  | H13  | 120.7    |
| 13   | Pb2  | 15   | 85.012(10)  | C14  | C13  | C12  | 118.6(6) |
| 13   | Pb2  | 15   | 111.414(10) | C14  | C13  | H13  | 120.7    |
| I4   | Pb2  | I4   | 107.526(14) | C16  | C15  | H15  | 121      |
| 15   | Pb2  | I4   | 160.383(10) | C14  | C15  | C16  | 118.0(6) |

| 15  | Pb2 | I4  | 160.383(10) | C14 | C15 | H15 | 121      |
|-----|-----|-----|-------------|-----|-----|-----|----------|
| 15  | Pb2 | I4  | 85.643(10)  | N19 | C18 | C11 | 117.3(4) |
| 15  | Pb2 | I4  | 85.643(9)   | N19 | C18 | C1  | 121.0(5) |
| 15  | Pb2 | 15  | 85.810(16)  | C1  | C18 | C11 | 121.6(5) |
| Pb1 | I4  | Pb2 | 91.468(9)   | N19 | C20 | H20 | 118.6    |
| Pb1 | 15  | Pb2 | 90.987(10)  | N19 | C20 | C21 | 122.9(5) |
| C12 | N17 | Pb1 | 119.0(3)    | C21 | C20 | H20 | 118.6    |
| C12 | N17 | C16 | 119.2(5)    | C13 | C14 | C15 | 120.7(6) |
| C16 | N17 | Pb1 | 119.8(3)    | C13 | C14 | H14 | 119(4)   |
| C7  | N6  | Pb1 | 119.3(3)    | C15 | C14 | H14 | 120(4)   |
| C11 | N6  | Pb1 | 119.5(3)    | C20 | C21 | H21 | 120.7    |
| C11 | N6  | C7  | 119.0(4)    | C2  | C21 | C20 | 118.7(6) |
| N17 | C12 | C7  | 117.0(4)    | C2  | C21 | H21 | 120.7    |
| N17 | C12 | C13 | 121.6(5)    | C18 | C1  | H1  | 120      |
| C13 | C12 | C7  | 121.4(5)    | C2  | C1  | C18 | 119.9(5) |
| N6  | C7  | C12 | 116.6(4)    | C2  | C1  | H1  | 120      |
| N6  | C7  | C8  | 121.0(5)    | C21 | C2  | C1  | 119.1(6) |
| C8  | C7  | C12 | 122.4(5)    | C21 | C2  | H2  | 120.5    |
| N6  | C11 | C10 | 121.5(5)    | C1  | C2  | H2  | 120.5    |
| N6  | C11 | C18 | 116.4(4)    |     |     |     |          |
|     |     |     |             |     |     |     |          |

#### References

- 1. G. Sheldrick, University of Göttingen, Germany, 1997.
- 2. G. Sheldrick, Bruker AXS, Madison Google Scholar, 2000.
- 3. Olex2 v1.2 © OlexSys Ltd. , 2004–2017.