Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Water-promoted dehydrative N-benzylation of 2-aminopyridines in heptane via borrowing hydrogen methodology

Taku Nakayama, Hidemasa Hikawa*, Shoko Kikkawa and Isao Azumaya*

Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan hidemasa.hikawa@phar.toho-u.ac.jp and isao.azumaya@phar.toho-u.ac.jp

Table of contents	S1
General methods	S2
Scheme S1. General procedure and characterization of all compounds.	S2-8
Table S1. Effects of catalysts and solvents.	S9
Scheme S2. Reaction time course.	S10
Scheme S3. Comparison of reaction rates in heptane with the addition	
of H ₂ O (1 mmol) vs. D ₂ O (1 mmol).	S11
Scheme S4. Comparison of reaction rates in H ₂ O vs. in D ₂ O.	S12
Scheme S5. Crossover experiment.	S13-15
Scheme S6. Kinetic isotope effect.	S16
Scheme S7 Dehydrative benzylation of aniline.	S17
Scheme S8. Deuterium incorporation into the benzylic position.	S18-19
Scheme S9. Scale-up experiment.	S20
Copies of ¹ H and ¹³ C NMR spectra of all compounds	S18-S42

General Methods.

All of the starting materials and solvents were purchased from Sigma–Aldrich Japan, FUJIFILM Wako Pure Chemical Co., Nacalai Tesque, Inc., and TCI Co., Ltd. All commercially available reagents and solvents (guaranteed reagents) were used without further purification. CHROMATOREX Q-PACK SI50 (Fuji Silysia Chemical Ltd, Japan) was used for flash column chromatography. All melting points were determined using a Yanako micro melting point apparatus without correction. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a JEOL ECS400 spectrometer. IR spectra were measured with a JASCO FT/IR-4100 spectrometer. Mass spectra were obtained using a JEOL the JMS-700 MStation Mass Spectrometer.

Scheme S1. General procedures.

General procedure I: A mixture of 2-aminopyridines 1 (1 mmol), palladium(II) acetate (12 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol) and benzylic alcohols 2 (5 mmol) in heptane (4 mL) was heated at 120 °C for 17 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexane/EtOAc) to give desired product 3.

General procedure II: A mixture of 2-aminopyridines 1 (1 mmol), palladium(II) acetate (24 mg, 0.1 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 72 mg, 0.2 mmol) and benzylic alcohols 2 (5 mmol) in octane (4 mL) was heated at 150 °C for 24 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexane/EtOAc) to give desired product 3.

N-Benzyl-5-(trifluoromethyl)pyridin-2-amine 3a¹

A mixture of 2-amino-5-(trifluoromethyl)pyridine (1a) (1.13 g, 7.0 mmol),

palladium(II) acetate (78.6 mg, 0.35 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 254.7 mg, 0.7 mmol) and benzyl alcohol (**2a**) (5 mmol) in heptane (28 mL) was heated at 120 °C for 17 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was triturated with hexane to give desired product **3a** (1.56 g, 6.2 mmol, 88%) as a white solid.

mp 157–159 °C; IR (KBr) (cm⁻¹) 3230, 3030, 1618; ¹H-NMR (400 MHz, CDCl₃): δ 4.56 (d, J = 7.7 Hz, 2H), 5.26 (s, 1H), 6.40 (d, J = 8.9 Hz, 1H), 7.27–7.38 (m, 5H), 7.57 (dd, J = 8.8, 2.3 Hz, 4H), 8.35 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 46.1, 106.1, 115.8 (q, J_{CF} = 32.6 Hz), 124.5 (q, J_{CF} = 270.3 Hz), 127.4, 127.6, 128.8, 134.5 (q, J_{CF} = 2.9 Hz), 138.2, 146.1 (q, J_{CF} = 3.8 Hz), 160.2; MS (FAB): m/z 253 $[M+H]^+$.

N-Benzyl-5-fluoropyridin-2-amine 3b¹

Following the general procedure I, 3b was obtained as a white solid. Yield 161

mg (79%); mp 101–102 °C; IR (KBr) (cm⁻¹) 3245, 3030, 1537, 1455 ; ¹H-NMR (400 MHz, CDCl₃): δ 4.47 (d, J = 5.7 Hz, 2H), 4.80 (s, 1H), 6.33 (dd, J = 8.9, 3.4 Hz, 1H), 7.18 (ddd, J = 8.5, 3.0, 0.9 Hz, 1H),7.27–7.37 (m, 5H), 7.97 (d, J = 3.0 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 46.8, 107.1 (d, J_{CF} = 3.8 Hz), 125.2 (d, $J_{CF} = 20.1$ Hz) 127.3 (d, $J_{CF} = 7.7$ Hz), 128.6, 134.6, 134.9, 139.0, 153.5 (d, $J_{CF} = 241.5$ Hz), 155.3 ; MS (FAB): m/z 203 [M+H]+.

Methyl-6-(benzylamino)nicotinate 3c¹

Following the general procedure I, 3c was obtained as a white solid. Yield

199 mg (82%); mp 156–158 °C; IR (KBr) (cm⁻¹) 3224, 2993, 1704, 1607; ¹H-NMR (400 MHz, CDCl₃): δ 3.87 (s, 3H), 4.58 (d, J = 6.0 Hz, 2H), 5.36 (s, 1H), 6.36 (dd, J = 0.7, 8.7 Hz, 1H), 7.27-7.38 (m, 5H), 7.99 (dd, J = 2.3, 8.7 Hz, 1H), 8.77 (dd, J = 0.5, 2.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 46.1, 51.7, 105.7, 115.5, 127.4, 127.6, 128.8, 138.1, 138.6, 151.5, 160.7, 166.4; MS (FAB): m/z 243 [M+H]+.

6-(Benzylamino)nicotinamide 3d¹

Following the general procedure I, 3d was obtained as a white solid. Yield 170 mg (75%); mp 169-171 °C; IR (KBr) (cm⁻¹) 3399, 3203, 1644, 1604 ;

¹H-NMR (400 MHz, Methanol- d_4): δ 4.57 (s, 2H), 6.54 (dd, J = 0.7, 8.9 Hz, 7.28–7.35 (m, 4H), 7.87 (dd, J = 2.5, 8.8 Hz, 1H), 8.53 (dd, J = 0.7, 2.5 Hz, 1H Methanol-d₄) δ 46.1, 108.8, 118.7, 128.1, 128.4, 129.5, 137.7, 140.6, 149.8, 162. 228 [M+H]+.

N-Benzyl-5-methylpyridin-2-amine 3e¹

Following the general procedure I, 3e was obtained as a white solid. Yield 191

mg (96%); mp 108-110 °C; IR (KBr) (cm⁻¹) 3235, 3027, 1611, 1536 ; ¹H-NMR (400 MHz, CDCl₃): δ 2.17 (s, 3H), 4.48 (d, J = 6.0 Hz, 1H), 4.74 (s, 1H), 6.32 (d, J = 8.5 Hz, 1H), 7.22–7.37 (m, 6H), 7.93– 7.94 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) & 17.4, 46.5, 106.4, 121.9, 127.1, 127.3, 128.6, 138.5, 139.4, 147.7, 156.9; MS (FAB): m/z 199 [M+H]+.

Me

Ph

Ph

MeO₂C

N-Benzylpyridin-2-amine 3f¹

Following the general procedure I, **3f** was obtained as a white solid. Yield 167 mg (90%); mp 91–93 °C; IR (KBr) (cm⁻¹) 3229, 3028, 1599, 1574 ; ¹H-NMR (400 MHz,

CDCl₃): 4.51 (d, J = 5.7 Hz 2H), 4.88 (brs, 1H), 6.38 (d, J = 8.2 Hz, 1H), 6.59 (ddd, J = 0.9, 5.0, 7.1 Hz, 1H), 7.25-7.43 (m, 6H), 8.11 (ddd, J = 0.7, 1.8, 5.0 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 46.3, 106.8, 113.1, 127.2, 127.4, 128.6, 137.5, 139.1, 148.2, 158.6; MS (FAB): m/z 185 [M+H]⁺.

N-Benzyl-5-nitropyridin-2-amine 3g²

Following the general procedure I, **3g** was obtained as a white solid. Yield 62 mg (27%); mp 129–131 °C; IR (KBr) (cm⁻¹) 3210, 3068, 2984, 1608 ; ¹H-NMR (400 MHz, CDCl₃): δ 4.64 (d, *J* = 5.3 Hz, 2H), 5.68 (s, 1H), 6.37 (dd, *J* = 9.2,

0.5 Hz, 3H), 7.30–7.39 (m, 5H), 8.20 (dd, *J* =9.3, 2.5 Hz, 1H), 9.03 (d, *J* = 2.5 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 46.3, 127.5, 127.9, 128.9, 133.1, 136.1, 146.9, 161.0; MS (FAB): *m/z* 198 [M+H]⁺.

6-Benzylaminonicotinicacid 3h³

Following the general procedure I, **3h** was obtained as a white solid. Yield 16 mg (7%) as a white solid; mp 214–222 °C; IR (KBr) (cm⁻¹) 3278, 1614, 1555

; ¹H-NMR (400 MHz, CDCl₃): δ 4.58 (s, 2H), 6.55 (d, *J* = 8.9 Hz, 1H), 7.21 – 7.36 (m, 5H), 7.92 (dd, *J* = 8.9, 2.3Hz, 1H), 8.61 (dd, *J* = 2.2, 0.5 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) 46.1, 116.1, 128.1, 128.4, 129.5, 139.3, 140.4, 152.0, 162.4, 169.3 ; MS (FAB): *m/z* 229 [M+H]⁺.

N-Benzylpyridin-3-amine 3i¹

Following the general procedure I, **3i** was obtained as a white solid. Yield 168 mg (88%); mp 87-89 °C; IR (KBr) (cm⁻¹) 3264, 3032, 1591, 1529 ; ¹H-NMR (400 MHz, CDCl₃): 4.15 (brs, 1H), 4.34 (s, 2H), 6.87 (ddd, J = 8.2, 3.0, 1.4 Hz, 1H), 7.07 (ddd, J

= 8.5, 4.8, 0.7 Hz, 1H), 7.27-7.36 (m, 5H), 7.97 (dd, *J* = 4.7, 1.4 Hz, 1H), 8.07 (d, *J* = 2.8 Hz, 1H), ; ¹³C-NMR (100 MHz, CDCl₃) δ 47.9, 118.6, 123.7, 127.4, 127.5, 128.8, 136.1, 138.5, 138.9, 144.0; MS (FAB): *m/z* 185 [M+H]⁺.

N-Benzylquinolin-2-amine 3j⁴

Following the general procedure I, **3j** was obtained as a yellow solid. Yield 191 mg (82%); mp 98–100 °C; IR (KBr) (cm⁻¹) 3272, 3061, 1622, 1572 ; ¹H-NMR

(400 MHz, CDCl₃): δ 4.73 (d, J = 5.5 Hz, 2H), 5.00 (brs, 1H), 6.63 (d, J = 8.9 Hz, 1H), 7.22 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 7.26-7.43 (m, 5H), 7.54 (ddd, J = 8.5, 6.9, 1.6 Hz, 1H) 7.59 (dd, J = 8.0, 1.6 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 45.9, 111.3, 122.2, 123.6, 126.2, 127.3, 127.4, 127.8, 128.6, 129.6, 137.4, 139.3, 148.0, 156.7; MS (FAB): m/z 235 [M+H]⁺.

Ph

 O_2N

HO₂C

N-Benzylnicotinamide 3k⁵

Following the general procedure II, **3k** was obtained as a white solid. Yield 140.1 mg (66%); mp 70–72 °C; IR (KBr) (cm⁻¹) 3286, 3030, 1634 ; ¹H-NMR (400 MHz, Methanol- d_4): δ 4.59 (s, 2H), 7.24 – 7.38 (m, 5H), 7.55 (ddd, J = 0.7, 4.8, 8.0 Hz,

ОМе

1H), 8.27 (ddd, J = 3.9, 7.8, 8.0 Hz, 1H), 8.68 (dd, J = 1.6, 4.9 Hz, 1H), 9.00 (d, J = 1.6 Hz, 1H); ¹³C-NMR (100 MHz, Methanol- d_4) δ 44.6, 125.2, 128.3, 128.7, 129.6, 132.0, 137.1, 139.8, 149.2, 152.7, 167.7; MS (FAB): m/z 213 [M+H]⁺.

N-(4-Methoxybenzyl)-5-(trifluoromethyl)pyridin-2-amine 31⁵

Following the general procedure I, **31** was obtained as a white solid. Yield 184 mg (65%); mp 173–175 °C; IR (KBr) (cm⁻¹) 3229, 2910,

1620, 1579 ; ¹H-NMR (400 MHz, CDCl₃): δ 3.81 (s, 3H), 4.48 (d, *J* = 5.7 Hz, 2H), 5.19 (s, 1H), 6.39 (d, *J* = 8.7 Hz, 3H), 6.89 (d, *J* = 8.7 Hz, 2H), 7.27 (d, *J* = 8.7 Hz, 2H), 7.57 (dd, *J* = 2.3, 8.8 Hz, 1H), 8.34 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 45.6, 55.3, 106.0, 114.1, 115.7 (q, *J*_{CF} = 32.6 Hz), 124.6 (q, *J*_{CF} = 270.3 Hz), 128.8, 130.1, 134.5 (q, *J*_{CF} = 2.9 Hz), 146.1 (q, *J*_{CF} = 3.8 Hz), 159.1, 160.1; MS (FAB): *m/z* 283 [M+H]⁺.

Methyl-6-(4-methoxybenzylamino)nicotinate 3m

Following the general procedure I, **3m** was obtained as a white solid. Yield 225 mg (83%); mp 137–139 °C; IR (KBr) (cm⁻¹) 3227, 2854, 1714, 1615; ¹H-NMR (400 MHz, CDCl₃): δ 3.80 (s,

3H), 3.87 (s, 3H), 4.50 (d, J = 5.5 Hz, 2H), 5.26 (s, 1H), 6.36 (dd, J = 8.8, 0.7 Hz, 3H), 6.88 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 3H), 7.98 (dd, J = 8.7, 2.3, Hz, 1H), 8.77 (d, J = 1.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 45.6, 51.6, 56.3, 105.7, 114.1, 115.4, 128.8, 130.1, 138.6, 151.5, 159.1, 160.7, 166.4; MS (FAB): m/z 273 [M+H]⁺, HRMS (FAB): m/z [M+H]⁺ calcd for C₁₅H₁₇N₂O₃ 273.1239; found 273.1239.

N-(4-Methoxybenzyl)pyridin-2-amine 3n¹

Following the general procedure I, **3n** was obtained as a white solid. Yield 151 mg (70%); mp 126–128 °C; IR (KBr) (cm⁻¹) 3234, 2951, 2835, 1603,

1573; ¹H-NMR (400 MHz, CDCl₃); δ 3.80 (s, 3H), 4.43 (d, J = 5.7 Hz, 2H), 4.79 (s, 1H), 6.37 (d, J = 8.2 Hz, 1H), 6.59 (ddd, J = 7.1, 5.0, 0.9 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 8.7 Hz, 3H), 7.40 (ddd, J = 8.6, 7.7, 2.1 Hz, 1H), 8.11 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) 45.9, 55.4, 106.9, 113.2, 114.1, 128.8, 131.2, 137.5, 148.3, 158.7, 158.9; MS (FAB): m/z 215 [M+H]⁺.

31

N-(4-Methoxybezyl)-5-methylpyridin-2-amine 30⁶

Following the general procedure I, 30 was obtained as a white solid.

Yield 191 mg (84%); mp 144–146 °C; IR (KBr) (cm⁻¹) 3235, 3007, 1614, 1534 ; ¹H-NMR (400 MHz, CDCl₃): δ 2.17 (s, 3H), 3.80 (s,

3H), 4.40 (d, J = 5.7 Hz, 2H), 4.66 (s, 1H), 6.31 (d, J = 8.5 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (dd, J = 8.5, 2.3 Hz, 1H), 7.28 (d, J = 8.7 Hz, 2H), 7.93 (dd, J = 1.6, 0.7 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 17.4, 46.0, 56.3, 106.4, 114.0, 121.8, 128.6, 131.4, 138.5, 147.7, 156.9, 158.8; MS (FAB): m/z 229 $[M+H]^+$.

H₂NOC

6-(4-Methoxybenzylamino)nicotinamide 3p⁸

Following the general procedure I (3 mmol of 4-methoxybenzyl alcohol was used), 3p was obtained as a white solid. Yield 179

mg (70%); mp 214-216 °C; IR (KBr) (cm⁻¹) 3481, 3413, 3192, 1668, 1651, 1606 ; ¹H-NMR (400 MHz, Methanol- d_4): δ 3.77 (s, 3H), 4.48 (s, 2H), 6.52 (d, J = 8.9, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.5, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7, 1H), 6.87 (d, J = 8.7, 1H), 7.87 (d, {J = 8.7, 1H), 7.87 (d, {J = 8.7, 1H), 7.87 (d, {J = 8.7, 1H), 7 2H), 7.86 (dd, J = 2.3, 8.9 Hz, 1H), 8.53 (d, J = 2.5 Hz, 1H); ¹³C-NMR (100 MHz, Methanol- d_4) δ 45.6, 55.7, 108.7, 114.9, 118.6, 129.7, 132.4, 137.7, 149.8, 160.4, 162.0, 171.1; MS (FAB): m/z 258 [M+H]+.

N-(4-Methylbenzyl)-5-(trifluoromethyl)pyridin-2-amine 3q ⁹

Following the general procedure I, **3q** was obtained as a white solid. Yield 245 mg (92%); mp 190-193 °C; IR (KBr) (cm⁻¹) 3236, 3050, 1620 ; ¹H-NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 4.50 (d, J = 5.7 Hz,

2H), 5.25 (s, 1H), 6.39 (d, J = 8.7 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.2 Hz, 1H), 7.57 (dd, J = 8.9, 2.5 Hz, 1H) 8.33 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 21.1, 45.9, 106.0, 115.7 (q, J_{CF} = 32.6 Hz), 124.6 (q, $J_{CF} = 270.3$ Hz), 127.4, 129.5, 134.5 (q, $J_{CF} = 2.9$ Hz), 135.1, 137.3, 146.1 (q, $J_{CF} = 4.8$ Hz), 160.2; MS (FAB): m/z 267 [M+H]+.

N-(3-Methylbenzyl)-5-(trifluoromethyl)pyridin-2-amine 3r¹

Following the general procedure I, 3r was obtained as a white solid. Yield 247 mg (93%); mp 113-115 °C; IR (KBr) (cm⁻¹) 3244, 2855,

 $1621, 1573; {}^{1}H-NMR (400 \text{ MHz, CDCl}_3): \delta 2.35 (s, 3H), 4.51 (d, J = 5.7 \text{ Hz}, 2H), 5.26 (s, 1H), 6.40 (d, J)$ = 8.7 Hz, 1H), 7.10–7.16 (m, 3H), 7.23 (d, J = 7.6 Hz, 1H), 7.57 (dd, J = 8.8, 2.5 Hz, 1H) 8.34 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 21.4, 46.1, 106.0, 115.7 (q, J_{CF} = 33.6 Hz), 124.4, 124.6 (q, J_{CF} = 270.3), 128.1, 128.3, 128.7, 134.5 (q, $J_{CF} = 2.9$ Hz), 138.1, 138.5, 146.1 (q, $J_{CF} = 3.8$ Hz), 160.2; MS (FAB): m/z267 [M+H]+

3r

F₃C

3p

OMe

Me

N-(2-Methoxybenzyl)-5-(trifluoromethyl)pyridin-2-amine 3s

Following the general procedure I, **3s** was obtained as a white solid. Yield 238 mg (84%); mp 116–118 °C; IR (KBr) (cm⁻¹) 3242, 2941, 1617; ¹H-NMR (400 MHz, CDCl₃): δ 3.87 (s, 3H), 4.54 (d, *J* = 6.0 Hz, 2H), 5.38 (s,

1H), 6.41 (d, J = 8.9 Hz, 1H), 6.89–6.94 (m, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.55 (dd, J = 8.7, 2.5 Hz, 1H), 8.33 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 41.6, 56.3, 106.0, 110.3, 115.3 (q, $J_{CF} = 32.6$ Hz), 120.5, 124.6 (q, $J_{CF} = 270.3$ Hz), 126.1, 128.8, 128.9, 134.3 (q, $J_{CF} = 3.8$ Hz), 146.1 (q, $J_{CF} = 4.8$ Hz), 157.5, 160.4; MS (FAB): m/z 283 [M+H]⁺, HRMS (FAB): m/z [M+H]⁺ calcd for C₁₄H₁₄F₃N₂O 283.1058; found 283.1057.

N-(4-Fluorobenzyl)-5-(trifluoromethyl)pyridin-2-amine 3t

Following the general procedure II, **3t** was obtained as a white solid. Yield 228 mg (84%); mp 119–120 °C; IR (KBr) (cm⁻¹): 3229, 1614, 1511; ¹H-

NMR (400 MHz, CDCl₃): δ 4.54 (d, J = 5.7 Hz, 2H), 5.28 (brs, 1H), 6.39 (d, J = 8.7 Hz, 1H), 7.03 (tdd, J = 8.7, 3.0, 2.1 Hz, 2H), 7.27–7.34 (m, 2H), 7.58 (dd, J = 8.8, 2.3 Hz, 1H), 8.33–8.34 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 45.3, 106.3, 115.6 (d, J_{CF} = 22.0 Hz), 116.0 (q, J_{CF} = 32.6 Hz), 124.5 (q, J_{CF} = 270.3 Hz), 129.0 (d, J_{CF} = 7.7 Hz), 134.0 (d, J_{CF} = 3.8 Hz), 134.5 (q, J_{CF} = 2.9 Hz), 146.1 (q, J_{CF} = 4.8 Hz), 160.0, 162.2 (d, J_{CF} = 245.4 Hz); HRMS (FAB): m/z [M+H]⁺ calcd for C₁₃H₁₁F₄N₂ 271.0858; found 271.0858.

N-(3-Fluorobenzyl)-5-(trifluoromethyl)pyridin-2-amine 3u

Following the general procedure II, **3u** was obtained as a white solid. Yield 153 mg (56%); mp 103–104 °C; IR (KBr) (cm⁻¹): 3235, 1618,

1329; ¹H-NMR (400 MHz, CDCl₃): δ 4.58 (d, *J* = 6.0 Hz, 2H), 5.32 (brs, 1H), 6.40 (d, *J* = 8.9 Hz, 1H), 6.97 (dddd, *J* = 8.7, 8.2, 2.5, 0.5 Hz, 1H), 7.05 (ddd, *J* = 9.6, 2.3, 1.6 Hz, 1H), 7.12 (dd, *J* = 7.6, 0.7 Hz, 1H), 7.31 (ddd, *J* = 8.0, 8.0, 6.0 Hz, 1H), 7.58 (dd, *J* = 8.8, 2.5 Hz, 1H), 8.34-8.35 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 45.4, 106.3, 114.2 (d, *J*_{CF} = 22.0 Hz), 114.4 (d, *J*_{CF} = 21.1 Hz), 116.1 (q, *J*_{CF} = 33.6 Hz), 122.8 (d, *J*_{CF} = 2.9 Hz), 124.5 (d, *J*_{CF} = 270.3 Hz), 130.3 (d, *J*_{CF} = 8.6 Hz), 134.5 (q, *J*_{CF} = 2.9 Hz), 141.1 (d, *J*_{CF} = 6.7 Hz), 146.1 (q, *J*_{CF} = 3.8 Hz), 160.0, 163.1 (d, *J*_{CF} = 246.3 Hz); HRMS (FAB): m/z [M+H]⁺ calcd for C₁₃H₁₁F₄N₂ 271.0858; found:271.0857.

5-Fluoro-N-(4-fluorobenzyl)pyridin-2-amine 3v 10

Following the general procedure II, 3v was obtained as a white solid.

Yield 195 mg (88%); mp 90-91 °C; IR (KBr) (cm⁻¹) 3246, 1535, 1233;

¹H-NMR (400 MHz, CDCl₃): δ 4.45 (d, J = 6.0 Hz, 2H), 4.77 (brs, 1H),

6.32 (dd, *J* = 9.2, 3.4 Hz, 1H), 7.02 (tdd, *J* = 8.7, 3.0, 2.1 Hz, 2H), 7.19 (ddd, *J* = 8.9, 8.0, 3.0 Hz, 1H),

F₃C

3t

7.31 (dd, J = 8.4, 5.3 Hz, 2H), 7.97 (d, J = 3.0 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 46.1, 107.2 (d, $J_{CF} = 3.8$ Hz), 115.5 (d, $J_{CF} = 21.1$ Hz), 125.3 (d, $J_{CF} = 20.1$ Hz), 129.0 (d, $J_{CF} = 7.7$ Hz), 134.8 (d, $J_{CF} = 24.9$ Hz), 134.8 (d, $J_{CF} = 3.8$ Hz), 153.6 (d, $J_{CF} = 241.5$ Hz), 155.1, 162.1 (d, $J_{CF} = 245.4$ Hz); HRMS (FAB): m/z [M+H]⁺ calcd for C₁₂H₁₁F₂N₂ 221.089; found 221.089.

References

- 1. H. Hikawa, H. Imamura, S. Kikkawa, I. Azumaya, Green Chem. 2018, 20, 3044.
- A. V. Gulevskaya, B. U. W. Maes, C. Meyers, W. A. Herrebout, B. J. van der Veken, *Eur. J. Org. Chem.* 2006, 5305-5314.
- P. J. Skinner, M. C. Cherrier, P. J. Webb, C. R. Sage, H. T. Dang, C. C. Pride, R. Chen, S. Y. Tamura, J. G. Richman, D. T. Connolly, G. Semple, *Bioorg. Med. Chem. Lett.* 2007, *17*, 6619.
- 4. H. Hikawa, R. Tan, A. Tazawa, S. Kikkawa, I. Azumaya, Eur. J. Org. Chem. 2020, 539.
- 5. J. Das, D. Banerjee, J. Org. Chem. 2018, 83, 3378-3384.
- 6. alsh, H. F. Sneddon, C. J. Moody, ChemSusChem 2013, 6, 1455.
- B. E. Fink, L. Chen, P. Chen, D. S. Dodd, A. V. Gavai, S.-H. Kim, W. Vaccaro, L. H. Zhang, Y. Zhao, 2009, WO 2009100375 20090813.
- 8. Y. Hoshimoto, T. Kinoshita, S. Hazra, M. Ohashi, S. Ogoshi, J. Am. Chem. Soc. 2018, 140, 7292.
- N. Kuboyama, K. Koizumi, O. Yamashita, O. Wakabayashi, K. Tomono, T. Hattori, 1999, JP 11246528 A 19990914.
- Z.-W. Xi, L. Yang, D.-Y. Wang, C.-D. Pu, Y.-M. Shen, C.-D. Wu, X.-G. Peng, J. Org. Chem. 2018, 83, 11886.

Table S1. Effects of catalysts and solvents.

A mixture of 5-(trifluoromethyl)pyridin-2-amine **1a** (162 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), and benzyl alcohol **2a** (515 µL, 5 mmol), in heptane (4 mL) was heated at 100 °C for 4 h in a sealed tube under air. After the reaction mixture was cooled, 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) and EtOAc were added to the reaction mixture. The organic layer was concentrated in vacuo. The residue was analyzed by ¹H-NMR spectroscopy.

F ₃ C		Pd catalys Ligand (1	t (5 mol%) F ₃ C 0 mol%)	
	、	solv	rent	^ℕ N [⊥] N [∧] Ph
	1a ² 5 equiv	100 °0	C, 4 h	3a ^H
Entry	Pd catalyst	Ligand	Solvent	NMR Yield
1	Pd(OAc) ₂	L1	heptane	quant
2	Pd(OAc) ₂	L1	heptane	0 ^{<i>b</i>}
3	Pd(TFA) ₂	L1	heptane	97
4	PdCl ₂	L1	heptane	0
5 ^c	Pd₂(dba)₃·CHCl₃	L1	heptane	77
6	Pd(OAc) ₂	L1	octane	quant
7	Pd(OAc) ₂	L1	hexane	2
8	Pd(OAc) ₂	L1	MCH ^e	38
9	Pd(OAc) ₂	L1	toluene	4
10	Pd(OAc) ₂	L1	(CHCl ₂) ₂	0
11	Pd(OAc) ₂	L1	1,4-dioxane	20
12	Pd(OAc) ₂	L1	none	8
13	Pd(OAc) ₂	L2	heptane	5
14	Pd(OAc) ₂	L3	heptane	0
15	Pd(OAc) ₂	L4	heptane	6
16	Pd(OAc) ₂	none	heptane	30
17 ^f	Pd(OAc) ₂	L1	heptane	99
	SO₃Na /	SO₃Na∖	HO ₂ C	
P112P-		/3		
L1	, TPPMS L2 , ⁻	IPPTS	L3	L4

^{*a*} Reaction conditions: **1a** (1 mmol), catalyst (5 mol%), TPPMS (10 mol%), **2a** (5 equiv), solvent (4 mL), 100 °C, 4 h under air. ^{*b*} Alcohol **2a** (3 equiv) was used. ^{*c*} Conducted at 120 °C for 16 h. ^{*d*} 2.5 mol%. ^{*e*} Methylcyclohexane. ^{*f*} Under Ar.

Scheme S2. Reaction time course.

$$\begin{array}{c|c} F_{3}C & & Pd(OAc)_{2} (5 \text{ mol}\%) \\ \hline N & NH_{2} & \textbf{2a} \\ \textbf{1a} & 5 \text{ equiv} \end{array} \xrightarrow{\begin{array}{c} Pd(OAc)_{2} (5 \text{ mol}\%) \\ \hline PPMS (10 \text{ mol}\%) \\ \hline \text{heptane, 100 °C} \end{array} \xrightarrow[]{} F_{3}C \\ \hline N & N \\ H \end{array} \xrightarrow[]{} Ph \\ \textbf{3a} \end{array}$$

A mixture of 5-(trifluoromethyl)pyridin-2-amine **1a** (162 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), benzyl alcohol **2a** (515 μ L, 5 mmol), and 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) in heptane (4 mL) was heated at 100 °C in a sealed tube under air. Every hour, a few drops of the reaction mixture were transferred into a test tube. The sample was extracted with CDCl₃, which was analyzed by ¹H-NMR spectroscopy.

Time (h)	[1a]	[3 a]	[4a]	amine 1a
0	0.25	0	0	
1	0.25	0	0.015	product 3a
2	0.24	0.01	0.035	
3	0.17	0.085	0.103	O PhCHO 4a
4	0	0.25	0.208	
				lime (h)

Scheme S3. Comparison of reaction rates in heptane with the addition of H_2O (1 mmol) versus D_2O (1 mmol).

A mixture of 5-(trifluoromethyl)pyridin-2-amine **1a** (162 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), benzyl alcohol **2a** (515 μ L, 5 mmol), 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard), and H₂O (18 mg, 1 mmol) or D₂O (20 mg, 1 mmol) in heptane (4 mL) was heated at 100 °C in a sealed tube under air. Every hour, a few drops of the reaction mixture were transferred into a test tube. The sample was extracted with CDCl₃, which was analyzed by ¹H-NMR spectroscopy.

Addition of H_2O (1 mmol)

Time (h)	[2a]	$\ln [2a]/[2a]_0$
0	1.25	0
1	1.0725	-0.153151179
2	0.93125	-0.294371061
3	0.7375	-0.527632742
4	0.575	-0.776528789
5	0.46125	-0.996958635

Addition of D₂O (1 mmol)

Time (h)	[2a]	ln [2a]/[2a] ₀
0	1.25	0
1	1.23	-0.016129382
2	1.18125	-0.056570351
3	1.1275	-0.103140759
4	1.07875	-0.147340588
5	1.00625	-0.216913002

KSIE $(k_{H_2O}/k_{D_2O}) = 0.2025/0.0436 = 4.6$

Scheme S4. Comparison of reaction rates in H₂O versus in D₂O.

A mixture of 5-(trifluoromethyl)pyridin-2-amine **1a** (162 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), benzyl alcohol **2a** (515 μ L, 5 mmol), and 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) in H₂O or D₂O (4 mL) was heated at 100 °C in a sealed tube under air. Every hour, a few drops of the reaction mixture were transferred into a test tube. The sample was extracted with CDCl₃, which was analyzed by ¹H-NMR spectroscopy.

•	TT O
1n	$H_{A}()$
111	11/0

Time (h)	[2a]	ln [2a]/[2a] ₀
0	1.25	0
1	1.175	-0.061875404
2	1.0275	-0.196014884
3	0.88125	-0.349557476
4	0.815	-0.427710717
5	0.74125	-0.52256088
6	0.65875	-0.64055473
7	0.56375	-0.796287939

in D_2O

Time (h)	[2 a]	$\ln [2a]/[2a]_0$
0	1.25	0
1	1.19125	-0.048140375
2	1.105	-0.123298216
3	1.0275	-0.196014884
4	0.91375	-0.313341819
5	0.83	-0.40947313

KSIE $(k_{H_2O}/k_{D_2O}) = 0.1134/0.0833 = 1.4$

Scheme S5. Crossover experiment.

A mixture of 5-(trifluoromethyl)pyridin-2-amine **1a** (162 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), TPPMS (36 mg, 0.1 mmol), benzylalcohol- d_7 **2a**- d_2 (290 mg, 2.5 mmol), 3-methylbenzyl alcohol **2r** (305 mg, 2.5 mmol) in heptane (4 mL) was heated at 120 °C for 17 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc) to give *N*-benzyl-5-(trifluoromethyl)pyridin-2-

amines (**3a**-*d* and **3a**-*d*₂ mixture) and *N*-(3-methylbenzyl)-5-(trifluoromethyl)pyridin-2-amines (**3r** and **3r***d* mixture) in 63% and 18% yield, respectively.

<i>N</i> -Benzyl-5-(trifluoromethyl)pyridin-2-amines (3a- <i>d</i> and 3a- <i>d</i> ₂ mixture)			
Signal δ	4.5-4.6 (m, 1H): methylene	6.4 (d, <i>J</i> =8.4 Hz, 1H)	
Integral value	0.81	1.00	
	$[3a-d] = 0.81, [3a-d_2] = 1-0.81 = 0.19$		

Scheme S6. Kinetic isotope effect.

A mixture of 5-(trifluoromethyl)pyridin-2-amine **1a** (162 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 5 mol%), TPPMS (36 mg, 10 mol%), benzyl alcohol **2a** (271 mg, 2.5 mmol), and benzyl- d_7 alcohol **2a**- d_2 (293 mg, 2.5 mmol) in H₂O (4 mL) was heated at 120 °C for 17 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexane/EtOAc). The product was analyzed by ¹H-NMR spectroscopy.

Scheme S7. Dehydrative benzylation of aniline.

A mixture of aniline (**1w**) (93 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), and benzyl alcohol **2a** (515 µL, 5 mmol), in heptane (4 mL) was heated at 120 °C for 17 h in a sealed tube under air. After the reaction mixture was cooled, 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) and EtOAc were added to the reaction mixture. The organic layer was concentrated in vacuo. The residue was analyzed by ¹H-NMR spectroscopy.

Scheme S8. Deuterium incorporation into the benzylic position.

1. Addition of D_2O (1 mmol) in heptane.

A mixture of N-benzylated substrate (**3a**) (252 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), and benzyl alcohol **2a** (515 μ L, 5 mmol), D_2O (20 mg, 1 mmol) in heptane (4 mL) was heated at 120 °C for 16 h in a sealed tube under air. After the reaction mixture was cooled, the organic layer was concentrated in vacuo. The residue was analyzed by ¹H-NMR spectroscopy.

2. The reaction in D_2O (4 mL) as a solvent.

A mixture of N-benzylated substrate (**3a**) (252 mg, 1 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), and benzyl alcohol **2a** (515 μ L, 5 mmol) in D₂O (4 mL) was heated at 120 °C for 16 h in a sealed tube under air. After the reaction mixture was cooled, the organic layer was concentrated in vacuo. The residue was analyzed by ¹H-NMR spectroscopy.

Scheme S9. Scale-up experiment.

A mixture of 2-amino-5-(trifluoromethyl)pyridine (**1a**) (1.13 g, 7.0 mmol), palladium(II) acetate (78.6 mg, 0.35 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 254.7 mg, 0.7 mmol) and benzyl alcohol (**2a**) (5 mmol) in heptane (28 mL) was heated at 120 °C for 17 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was triturated with hexane to give desired product **3a** (1.56 g, 6.2 mmol, 88%).

¹H NMR (400 MHz, CDCl₃) 0.1 PROCESSING PARAMETERS ---lance(0, FALSE)
0.1[H2], 0.0[s])
zoid(0[%], 0[%], 80[%], 100[%])
ill(1)
1, TRUE, TRUE) dc_ba sexp(trape zerof fft(TRUE) 6.0 0.8 0.7 0.6 0.5 2.00 4.0 03 [10] 0.99 0.92 0.2 0.1 abundance F₃C ∎ `N 3a H Ph X : parts per Million : Proton ¹³C NMR (100 MHz, CDCl₃) JEOL 扫 ----- PROCESSING PARAMETERS ----dc_balance(0, PLLSE) seep(0.5;Hz], 0.0[a]) trappercid(0[4], 0[4], 80[4], 100[4]) trappercid(0[4], 0[4], 80[4], 100[4]) sect(1, TRUE, TRUE) machingphase ppm 1.6 1.5 4 mac ppm classification = 1.jdf 1.2 1.3 1.0 1.1 6.0 0.8 0.7 0.4 0.5 0.6 0.3 0.2 0.1 0.1 X : parts per Million : Carbon13

N-Benzyl-5-(trifluoromethyl)pyridin-2-amine 3a

N-Benzyl-5-fluoropyridin-2-amine 3b

Methyl-6-(benzylamino)nicotinate 3c

N-Benzyl-5-methylpyridin-2-amine 3d

6-(Benzylamino)nicotinamide 3e

N-Benzylpyridin-2-amine 3f

N-Benzyl-5-nitropyridin-2-amine 3g

6-Benzylaminonicotinicacid 3h

N-Benzylpyridin-3-amine 3i

N-Benzylquinolin-2-amine 3j

N-(4-Methoxybenzyl)-5-(trifluoromethyl)pyridin-2-amine 31

Methyl-6-(4-methoxybenzylamino)nicotinate 3m

N-(4-Methoxybenzyl)pyridin-2-amine 3n

N-(4-Methoxybezyl)-5-methylpyridin-2-amine 30

N-(4-Methylbenzyl)-5-(trifluoromethyl)pyridin-2-amine 3q

N-(3-Methylbenzyl)-5-(trifluoromethyl)pyridin-2-amine 3r

N-(2-Methoxybenzyl)-5-(trifluoromethyl)pyridin-2-amine 3s

N-(4-Fluorobenzyl)-5-(trifluoromethyl)pyridin-2-amine 3t

N-(3-Fluorobenzyl)-5-(trifluoromethyl)pyridin-2-amine 3u

5-Fluoro-N-(4-fluorobenzyl)pyridin-2-amine 3v