Electronic Supplementary Information: Anionic CO₂ activation in the anionic and di-anionic state of aza-naphthalene

Chang Jun Park, One Heo, Hyeon Seok Lee, Kyung Suh Lee, and Sang Hak Lee* Department of Chemistry, Pusan National University, Busan 46241, Korea Email: shlee@pusan.ac.kr

Figure S1 – S3

Optimized isomers and energetics of TAN-(CO₂)_n (n = 2 -3) complexes.

Figure S4 - S7

In order to investigate the chemical reactivity with CO_2 molecules as a function of the number of nitrogen atoms in naphthalene, we performed theoretical calculations of the structure and energetics of nitrogen-containing naphthalene molecules in the anionic and dianionic states. As expected, the dianionic states of mono- and di-aza-naphthalene were found to be energetically unstable compared to reference neutral and anionic states. Depending on the position of the nitrogen atoms, the naphthalene molecules react differently to the CO_2 molecules. When nitrogen atoms are not too close to each other, they then react with CO_2 molecules in the anionic and di-anionic states. As for tri-aza-naphthalene, all nitrogen atoms interact with CO_2 molecules in the dianionic state but not in the anionic state.

Table S1 - S2

Table S1 shows the energetics of tetra-aza-naphthalene and CO₂ complexes in the neutral, anionic, and dianionic states.

Table S2 shows the energetics calculated using the various DFT functionals (B3LYP, BP86, and BPBE)

Figure S1. Neutral, anionic, and di-anionic geometries and calculated energies of the 2 & 4 isomer of TAN₁(CO₂)₁ optimized at the BP86/6-311g** level

(c) CO₂ Position : 4, 6

(d) CO_2 Position : 4, 8

Figure S2. Neutral, anionic, and di-anionic geometries and calculated energies of TAN₁(CO₂)₂ optimized at the BP86/6-311g** level

Figure S3. Neutral, anionic, and di-anionic geometries and calculated energies of TAN₁(CO₂)₃ optimized at the BP86/6-311g** level

Figure S4. Optimized geometries and their energetics of quinoline (a) and iso-quinoline (b) in the neutral, anionic, and dianionic states.

Figure S5. Optimized geometries and their energetics of di-azanaphthalene, (a) quinazoline, (b) quinoxaline, (c) 1,5– naphthyridine, (d) 1,6–naphthyridine, (e) 1,7–naphthyridine, (f) 1,8–naphthyridine, (g) 2,6–naphthyridine, (h) 2,7– naphthyridine, in the neutral, anionic, and di-anionic states.

Figure S6. Optimized geometries and their energetics of tri-azanaphthalene, (a) pyrido[3,2-d]pyrimidine, (b) pyrido[4,3-d]pyrimidine, (c) pyrido[3,4-d]pyrimidine, (d) pyrido[2,3-d]pyrimidine, (e) pyrido[3,2-b]pyrazine, (f) pyrido[3,4-b]pyrazine, in the neutral, anionic, and di-anionic states.

Figure S7. Optimized geometries and their energetics of TAN₁(CO₂)₄ optimized using various DFT functionals: WB97XD, M11, PBEPBE with 6-311G** basis set.

	CO ₂ po	osition	Anoin (ΔE)	Di-anion (ΔE)	
		BP86	1.32	-2.73	
TAN_1	-	BPBE	1.20	-2.98	
		B3LYP	1.13	-3.12	
TAN ₁ (CO ₂) ₁		BP86	1.54	-1.06	
	4	BPBE	1.37	-1.37	
		B3LYP	1.27	-1.46	
		BP86	1.70	-0.89	
	6	BPBE	1.53	-1.18	
		B3LYP	1.43	-1.26	
TAN1(CO2)2	2, 4	BP86	1.78	-0.07	
		BPBE	1.60	-0.43	
		B3LYP	1.45	-0.56	
	2, 6	BP86	1.87	0.54	
		BPBE	1.66	0.20	
		B3LYP	1.45	0.15	
	4, 6	BP86	1.79	0.18	
		BPBE	1.61	-0.17	
		B3LYP	1.45	-0.25	
	4, 8	BP86	1.65	0.00	
		BPBE	1.46	-0.36	
		B3LYP	1.40	-0.45	
TAN1(CO ₂)3	2, 4, 6	BP86	1.93	0.92	
		BPBE	1.72	0.52	
		B3LYP	1.60	0.31	
	4, 6, 8	BP86	1.87	0.64	
		BPBE	1.67	0.23	
		B3LYP	1.56	0.08	
TAN ₁ (CO ₂) ₄		BP86	2.00	1.13	
	2, 4, 6, 8	BPBE	1.77	0.69	
		B3LYP	1.71	0.46	

Table S1. Calculated Energies of Tetraazanaphthalene-(CO₂)_n Complexes^b

^bAll energies in eV. Calculated energies were obtained at the BP86, BPBE, B3LYP/6-311g** level.

Table S2. Calculated Energies of Tetraazanaphthalene-(CO₂)_n Complexes^a

	TAN_1	TAN ₁ (CO ₂) ₁		TAN ₁ (CO ₂) ₂			TAN ₁ (CO ₂) ₃		TAN ₁ (CO ₂) ₄	
CO ₂ position	-	4	6	2, 4	2, 6	4,6	4, 8	2, 4, 6	4, 6, 8	2, 4, 6, 8
Anoin (ΔE)	1.32	1.54	1.70	1.78	1.87	1.79	1.65	1.93	1.87	2.00
Di-anion (ΔE)	-2.73	-1.06	-0.89	-0.07	0.54	0.18	0.00	0.92	0.64	1.13

^aAll energies in eV. Calculated energies were obtained at the BP86/6-311g** level.