## Polytorsional-amide/carboxylates-directed Cd(II) coordination

## polymers exhibiting multi-functional sensing behaviors

Jie Chi,<sup>a#</sup> Yajun Mu,<sup>a#</sup> Yan Li,<sup>a</sup> Pengpeng Shao,<sup>b</sup> Guocheng Liu,<sup>a,b\*</sup> Bin Cai,<sup>c\*</sup> Na Xu,<sup>a</sup> and

Yongqiang Chend\*

<sup>a</sup> College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China.

<sup>b</sup> Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of

Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

<sup>c</sup> School of Chemistry and Chemical Engineerng, Zhoukou Normal Unversity, Zhoukou 466001, P.R. China.

<sup>d</sup> College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi, 030619, PR China. <sup>#</sup>Jie Chi and Yajun Mu contributed equally to this work.

\*Corresponding author: E-mail: lgch1004@sina.com (Guocheng Liu), caib@actinide.org (Bin Cai) chenjzxy@126.com (Yongqiang Chen)

# **Supporting Information**

### Materials and Methods

According to the method reported in the literature, the ligand [N,N'-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide (L)] was synthesized.<sup>[S1]</sup> All reagents and solvents were obtained from commercial sources without further purification. Powder X-ray diffraction (PXRD) data were measured on a D/teX superdiffractometer (Cu-K $\alpha$ ,  $\lambda = 1.5406$  Å). Infrared absorption spectroscopy (KBr pellet) was recorded at 296 K on a Varian 640 FT-IR spectrometer in the range 500–4000 cm<sup>-1</sup>. The fluorescence spectrum was tested on a Hitachi F-4500 fluorescence spectrometer. Scanning electron microscope image was obtained on JSM-IT200. Ultravioletvisible absorption spectra were performed on PerkinElmer Lambda 750. The fluorescence lifetime can be obtained by using FLS1000 transient steady-state fluorescence spectrometer.

### X-ray crystallography

The X-ray single crystal diffraction data for 1-3 were collected at 296 K on a Bruker Smart APEX II diffractometer equipped with MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å). The structures were solved by direct method and refined by full-matrix least-squares on F<sup>2</sup>. All non-hydrogen atoms were refined anisotropically. The crystal data details of CPs 1-3 are shown in Table 1. Tables S1-S3 (supporting information) are the selected bond lengths (Å) and angles (deg). CCDC numbers: Crystal 2071313(1), 2071314(2), 2071312(**3**). collected data can be by www.ccdc.cam.ac.uk/conts/retrieving.html. In the crystal analysis process, CP 1 used "Solvent mask" command, CP 3 used "EQIV" and "DFIX" operations. In 3, there are two dicarboxylates ligands in the crystal structure, and each ligand has a symmetrical center, so the independent one is half. The unit has two such semi-ligands (Ligand A: O5, O6, C1-C4 and ligand B: O1, O2, C5-C8). Ligand A is unstable and may be disordered when it is corrected. Since the synthetic raw materials contain chlorine, ligand A and chlorine were disordered, and the occupancy was corrected. The final result showed that the occupancy of ligand A was 0.758, and that of chlorine (Cl1) was 0.242.

#### Synthesis of 2 and 3

**Preparation of C**<sub>31</sub>**H**<sub>32</sub>**CdN**<sub>4</sub>**O**<sub>7</sub> (2). CdCl<sub>2</sub>·5/2H<sub>2</sub>O (0.0457g, 0.2mmol), **L** (0.0394g, 0.1mmol), H<sub>2</sub>PIM (0.0320g, 0.2mmol), H<sub>2</sub>O (6mL), NaOH (0.1mol/L, 4mL) and DMA (2mL), the mixture was placed in a 25 mL Teflon-lined stainless steel autoclave and then reacted at 120°C for 4 days. After cooling to room temperature, colorless crystals were obtained in 26% yield based on **L**. Anal. Calcd (%) for C<sub>31</sub>H<sub>32</sub>CdN<sub>4</sub>O<sub>7</sub>: C 54.35, H 4.71, N 8.18. Found: C 55.33, H 4.71, N 8.19. IR (KBr,  $cm^{-1}$ ): 3267w, 3043w, 2926w, 1627s, 1537s, 1420s, 1308s, 1213w ,1147w, 1013m, 968w, 912w, 778s, 628m (Fig. S1).

Preparation of  $C_{31.03}H_{30.55}CdCl_{0.24}N_4O_{5.52}$  (3). The synthetic method of 3 was similar to that of 2, except that H<sub>2</sub>PIM was replaced by H<sub>2</sub>SUB (0.0348g, 0.2mmol). Colorless crystals were obtained in 30% yield based on L. Anal. Calcd (%) for  $C_{31.03}H_{30.55}CdCl_{0.24}N_4O_{5.52}$ : C 55.73, H 4.57, N 8.38. Found: C 56.45, H 4.72, N 8.24. IR (KBr, cm<sup>-1</sup>): 3216w, 3038w, 2915w, 1660s, 1615m, 1570w, 1532s, 1420s, 1303m, 1258w, 1219w, 1124w, 1018w, 856w, 756w, 717w (Fig.

### The process of the fluorescence experiment for CPs 1-3

Because the CPs are insoluble in water, the synthesized crystals were placed in a ball-milled tube with several ball-milled balls with a particle size of 0.5 mm after air drying, distilled water was added. The ball-milled process was performed for 30 minutes and left at room temperature for one day to obtain a fine powder. The morphology of the sensing materials were carried out by SEM(Fig. S2). In the fluorescence sensing experiment, 3 mg crystal powder was soaked in cationic solution (Ba<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Na<sup>+</sup>, Cd<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup>, Zn<sup>2+</sup>, K<sup>+</sup>), anionic solution (OH<sup>-</sup>, HCO<sub>3</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, Br<sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, I<sup>-</sup>, CH<sub>3</sub>COO<sup>-</sup>, MnO<sub>4</sub><sup>-</sup>, CrO<sub>4</sub><sup>2-</sup>, Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>) and organochlorine pesticides (AT, 1,2,3-TCB, 1,2,4,5-TCB, 2,6-DC-4-NA). Ultrasonic treatment was carried out for 40 minutes, and the suspension obtained was tested for selectivity and anti-interference. Fluorescence titration experiment can be used as the basis of quantitative analysis of analytes. 3 mg crystal powder was added into deionized water, ultrasonic for 40 minutes to form suspension, then added the solution to be tested into the prepared solution for fluorescence titration experiment, and used the instrument to test the fluorescence intensity.

| 1                 |            |                   |           |  |  |
|-------------------|------------|-------------------|-----------|--|--|
| Cd(1)-O(4)A       | 2.4034(17) | O(1)-Cd(1)-N(1)   | 91.95(7)  |  |  |
| Cd(1)–O(1)B       | 2.3321(16) | O(1)B-Cd(1)-N(1)  | 90.60(7)  |  |  |
| Cd(1)–O(1)        | 2.3142(16) | O(1)-Cd(1)-N(4)C  | 90.44(7)  |  |  |
| Cd(1)-O(3)A       | 2.3507(16) | O(1)B-Cd(1)-N(4)C | 96.17(8)  |  |  |
| Cd(1)–N(1)        | 2.3347(18) | O(3)ACd(1)O(4)A   | 55.01(6)  |  |  |
| Cd(1)–N(4)C       | 2.354(2)   | O(3)A-Cd(1)-N(4)C | 90.08(7)  |  |  |
| O(1)-Cd(1)-O(4)A  | 139.29(5)  | N(1)Cd(1)O(4)A    | 88.42(7)  |  |  |
| O(1)B-Cd(1)-O(4)A | 147.94(5)  | N(1)-Cd(1)-O(3)A  | 89.17(6)  |  |  |
| O(1)-Cd(1)-O(1)B  | 72.77(6)   | N(1)-Cd(1)-N(4)C  | 173.21(8) |  |  |
| O(1)-Cd(1)-O(3)A  | 165.67(6)  | N(4)C-Cd(1)-O(4)A | 85.62(7)  |  |  |
| O(1)B-Cd(1)-O(3)A | 92.94(6)   |                   |           |  |  |

Table S1 Selected bond distances (Å) and angles (°) for 1.

Symmetry code: A: -1 + x, +y, +z; B: 2 - x, -y, -1 - z; C: -1 + x, 1 + y, 1 + z

 Table S2 Selected bond distances (Å) and angles (°) for 2.

|                   | 2          | ,                 |           |
|-------------------|------------|-------------------|-----------|
| Cd(1)–O(4)A       | 2.3197(19) | O(1)-Cd(1)-O(1)B  | 71.34(8)  |
| Cd(1)–O(1)B       | 2.367(2)   | O(1)B-Cd(1)-O(3)A | 163.66(7) |
| Cd(1)–O(1)        | 2.281(2)   | O(1)-Cd(1)-O(3)A  | 93.81(7)  |
| Cd(1)-O(3)A       | 2.4618(19) | O(1)-Cd(1)-N(1)   | 95.67(8)  |
| Cd(1)–N(1)        | 2.329(2)   | O(1)-Cd(1)-N(4)C  | 94.37(8)  |
| Cd(1)–N(4)C       | 2.376(2)   | O(1)B-Cd(1)-N(4)C | 90.51(8)  |
| O(4)A–Cd(1)–O(1)B | 140.60(7)  | N(1)Cd(1)O(1)B    | 92.10(8)  |
| O(4)A-Cd(1)-O(3)A | 54.36(7)   | N(1)Cd(1)O(3)A    | 96.26(8)  |
| O(4)A–Cd(1)–N(1)  | 86.07(8)   | N(1)-Cd(1)-N(4)C  | 169.94(8) |
| O(4)A-Cd(1)-N(4)C | 85.74(8)   | N(4)C-Cd(1)-O(3)A | 83.68(8)  |
| O(1)-Cd(1)-O(4)A  | 148.03(7)  |                   |           |

Symmetry code: A: 2 - x, -y, 1 - z; B: 2 - x, -y, 2 - z; C: 1 + x, -1 + y, 1 + z

Table S3 Selected bond distances (Å) and angles (°) for 3.

|                  | 3          | ;                 |            |
|------------------|------------|-------------------|------------|
| Cd(1)-O(6)A      | 2.272(7)   | N(4)ACd(1)Cl(1)   | 92.5(3)    |
| Cd(1)–O(2)       | 2.339(5)   | O(2)-Cd(1)-Cl(1)  | 95.6(3)    |
| Cd(1)–O(1)       | 2.486(5)   | O(6)-Cd(1)-O(4)B  | 96.2(2)    |
| Cd(1)-N(4)A      | 2.340(6)   | N(1)-Cd(1)-O(4)B  | 81.25(18)  |
| Cd(1)–N(1)       | 2.335(6)   | N(4)A-Cd(1)-O(4)B | 77.83(17)  |
| Cd(1)–Cl(1)      | 2.430(11)  | O(2)-Cd(1)-O(4)B  | 136.20(16) |
| Cd(1)-O(4)B      | 2.437(5)   | Cl(1)Cd(1)O(4)B   | 127.6(3)   |
| O(6)-Cd(1)-N(1)  | 81.4(2)    | O(6)–Cd(1)–O(1)   | 170.8(2)   |
| O(6)-Cd(1)-N(4)A | 105.7(2)   | N(1)-Cd(1)-O(1)   | 89.39(19)  |
| N(1)-Cd(1)-N(4)A | 158.49(19) | N(4)ACd(1)O(1)    | 82.89(18)  |
| O(6)-Cd(1)-O(2)  | 126.8(2)   | O(2)–Cd(1)–O(1)   | 54.10(16)  |
| N(1)Cd(1)O(2)    | 95.94(19)  | Cl(1)Cd(1)O(1)    | 148.4(3)   |
| N(4)ACd(1)O(2)   | 95.69(18)  | O(4)BCd(1)O(1).   | 82.12(16)  |
| N(1)-Cd(1)-Cl(1) | 104.2(3)   |                   |            |

Symmetry code: A: +x, 1 + y, z - 1; B: 2 - x, 1 - y, 1 - z

The Cd–O bond length range of CPs **1–3** is 2.262–2.486. After sorting out the published literature, it is found that all the Cd–O bond lengths are within the normal range.<sup>[S2-S5]</sup>





The infrared spectrum of CPs 1–3 is displayed in the frequency range of 500–4000 cm<sup>-1</sup>. The characteristic peaks of –OH groups of water molecules in 1 and 2 were observed at about 3300–3500 cm<sup>-1</sup>.<sup>[S6]</sup> The peaks in the range of 2800–3300 cm<sup>-1</sup> were mainly attributed to –CH<sub>2</sub>– in carboxylic acid groups and ligand L. For the  $v_{C=0}$  vibration of amide group, strong bands appeared at 1632 cm<sup>-1</sup>, 1627 cm<sup>-1</sup>, 1660 cm<sup>-1</sup> in CPs 1–3, respectively.<sup>[S7]</sup> The vibration range of naphthalene ring skeleton is 1400–1600 cm<sup>-1</sup>.<sup>[S8]</sup>



(a)



(b)



(c) Fig. S2 Image obtained by SEM of ground samples of CP 1 (a), CP 2 (b) and CP 3(c) after ball-milled.





As shown in Fig. S3, the peak position of diffraction peak obtained by single crystal fitting is basically consistent with the peak position of bulk material measured by experiment, which shows that the purity of bulk material is good. After soaking in analytes solutions (Fe<sup>3+</sup>, MnO<sub>4</sub><sup>-</sup>, CrO<sub>4</sub><sup>2-</sup>, Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> and 2,6-DC-4-NA) for 24 hours, the PXRD patterns of **1** were basically consistent with the original spectra, which show the good stability and recoverability during the fluorescent process.



Fig. S4 (a) Fluorescence intensity spectra of CP 2 dispersed in different metal cations (Waterfall plot). (b) Emission intensity of CP 2 in various metal cations (Histogram). (c) Adding Fe<sup>3+</sup> solutions with different volumes (concentrations of  $10^{-3}$  M), the fluorescence intensity of CP 2 (Inset: At low concentrations, linear relationship between I<sub>0</sub>/I – 1 and analyte concentration). (d) The selectivity of CP 2 to Fe<sup>3+</sup> solution is interfered by other metal cations.



Fig. S5 (a) Fluorescence intensity spectra of CP 3 dispersed in different metal cations (Waterfall plot). (b) Emission intensity of CP 3 in various metal cations (Histogram). (c) Adding Fe<sup>3+</sup> solutions with different volumes (concentrations of  $10^{-3}$  M), the fluorescence intensity of CP 3 (Inset: At low concentrations, linear relationship between  $I_0/I - 1$  and analyte concentration). (d) The selectivity of CP 3 to Fe<sup>3+</sup> solution is interfered by other metal cations.



Fig. S6 (a) Fluorescence intensity spectra of CP 2 dispersed in different anions (Waterfall plot). (b)Emission intensity of CP 2 in various anions (Histogram).



Fig. S7 (a) Fluorescence intensity spectra of CP 3 dispersed in different anions (Waterfall plot). (b)



Emission intensity of CP 3 in various anions (Histogram).

Fig. S8 The anti-interference experiment of CP 2, in the presence of  $MnO_4^-$ ,  $CrO_4^{2-}$  and  $Cr_2O_7^{2-}$  solutions.



Fig. S9 The anti-interference experiment of CP 3, in the presence of  $MnO_4^-$ ,  $CrO_4^{2-}$  and  $Cr_2O_7^{2-}$  solutions.



Fig. S10 The fluorescence intensity of CPs 2 and 3, adding  $MnO_4^-$  (a) and (b),  $CrO_4^{2-}$  (c) and (d),  $Cr_2O_7^{2-}$  (e) and (f) solutions with different volumes and concentrations of  $10^{-3}$  M (Inset: At low concentrations, linear relationship between  $I_0/I - 1$  and analyte concentration).



Fig. S11 (a) Fluorescence intensity spectra of CP 2 dispersed in several pesticides (Waterfall plot).
(b) Emission intensity of CP 2 in different pesticides (Histogram). (c) Fluorescence spectra of CP 2 to pesticides with different volumes in ethanol solution (Inset: At low concentrations, linear relationship between I<sub>0</sub>/I – 1 and analyte concentration). (d) The anti-interference experiment.



Fig. S12 (a) Fluorescence intensity spectra of CP 3 dispersed in several pesticides (Waterfall plot).
(b) Emission intensity of CP 3 in different pesticides (Histogram). (c) Fluorescence spectra of CP 3 to pesticides with different volumes in ethanol solution (Inset: At low concentrations, linear relationship between I<sub>0</sub>/I – 1 and analyte concentration). (d) The anti-interference experiment.



**Fig. S13** (a)–(e) Cyclic experiments of CPs **1–3**, blue is the original intensity, red is the fluorescence intensity after adding five analytes.

| Table 54. Comparison of different coordination porymers for detection of the |                                           |                               |           |  |  |  |
|------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|-----------|--|--|--|
| Coordination polymers                                                        | Quenching constant Ksv (M <sup>-1</sup> ) | The detection limit $(\mu M)$ | Reference |  |  |  |
| $[Pb(L)_2]_n$                                                                | $1.01 \times 10^{4}$                      |                               | S9        |  |  |  |
| ${[Ca_{3}L_{2}(H_{2}O)_{6}]\cdot 2H_{2}O}_{n}$                               | 3737.8                                    | 1040                          | 66        |  |  |  |
| ${[Cd_2(DDPP)(DMF)(H_2O)] \cdot DMF}_n$                                      | $3.98 \times 10^{4}$                      | 477                           | 67        |  |  |  |
| $[Cu_3L]_n$                                                                  | $9.47 \times 10^{3}$                      | 998                           | 68        |  |  |  |
| $\{[Zn_2(\mu_4-L)(\mu-dpetan)_2]\cdot 2H_2O\}_n$                             | $2.404 \times 10^{3}$                     | 210                           | S10       |  |  |  |
| $[Cd(L)(ADI)] \cdot H_2O$                                                    | $1.202 \times 10^{4}$                     | 630                           | this work |  |  |  |
| $[Cd(L)(PIM)] \cdot H_2O$                                                    | $1.189 \times 10^{4}$                     | 710                           | this work |  |  |  |
| [Cd(L)(SUB)]                                                                 | $1.734 \times 10^{4}$                     | 730                           | this work |  |  |  |

Table S4. Comparison of different coordination polymers for detection of Fe<sup>3+</sup>.

| Table S5. Compar | ison of different | coordination r | polymers for | detection of anions. |
|------------------|-------------------|----------------|--------------|----------------------|
|                  |                   | 1              |              |                      |

| Coordination polymers                     | Analytes                                                                     | Quenching constant Ksv          | The detection | Reference |
|-------------------------------------------|------------------------------------------------------------------------------|---------------------------------|---------------|-----------|
|                                           |                                                                              | $(M^{-1})$                      | limit (µM)    |           |
| [Zn(L) <sub>2</sub> ]·2DMF (USTC-5)       | $MnO_4^-$                                                                    | $1.92 \times 10^{4}$            | 23.4          | 69        |
| ${[Co(TCPA)(L)] \cdot H_2O}_n$            | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> /CrO <sub>4</sub> <sup>2-</sup> | $1.43/1.24 \times 10^4$         | 0.06/0.21     | 70        |
| [EuL(CH <sub>3</sub> COO)Cl] <sub>n</sub> | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> /CrO <sub>4</sub> <sup>2-</sup> | $1.15/2.52 \times 10^4$         | 86.3/85.4     | 74        |
| $[Cd(L)(HIPA)(H_2O)] \cdot H_2O$          | MnO4-/Cr2O72-/CrO42-                                                         | $1.17/1.08/1.03 \times 10^4$    | 256/278/291   | S11       |
| $[Zn(L)_2]_n$                             | $Cr_2O_7^{2-}/CrO_4^2$                                                       | $4.454/1.161 \times 10^4$       | 0.67/2.56     | S12       |
| $[Cd(L)(ADI)] \cdot H_2O$                 | MnO4 <sup>-/</sup> Cr2O7 <sup>2-/</sup> CrO4 <sup>2-</sup>                   | $1.794/3.055/1.987 \times 10^4$ | 420/250/380   | This work |
| $[Cd(L)(PIM)] \cdot H_2O$                 | $MnO_4^{-}/Cr_2O_7^{2-}/CrO_4^{2-}$                                          | $2.158/2.922/2.399 \times 10^4$ | 390/290/350   | This work |
| [Cd(L)(SUB)]                              | $MnO_4^{-\!/}Cr_2O_7^{2-\!/}CrO_4^{2-\!}$                                    | $2.506/1.629/2.323\times10^4$   | 510/780/550   | This work |

Table S6. Comparison of different coordination polymers for detection of 2,6-DC-4-NA.

\_

| Coordination polymers             | Quenching constant Ksv (M <sup>-1</sup> ) | The detection limit (µM) | Reference |
|-----------------------------------|-------------------------------------------|--------------------------|-----------|
| [Zn(L)(1,4-BDC)]·H <sub>2</sub> O | $2.78 	imes 10^4$                         | 119                      | 23        |
| [Zn(L)(1,3-BDC)]·H <sub>2</sub> O | $4.88 	imes 10^4$                         | 68                       | 23        |
| $[Zn_2(L)_2(IP)]_2$               | $3.9 	imes 10^4$                          | 67                       | 55        |
| Zn-NDC-MI                         | $2.9 	imes 10^4$                          | 0.06                     | 73        |
| [Cd(L)(ADI)]·H <sub>2</sub> O     | $1.334 \times 10^{5}$                     | 57                       | This work |
| $[Cd(L)(PIM)] \cdot H_2O$         | $1.609 \times 10^{5}$                     | 52                       | This work |
| [Cd(L)(SUB)]                      | $2.483 \times 10^{5}$                     | 51                       | This work |

| Test      | Fe <sup>3+</sup> | $MnO_4^-$ | CrO <sub>4</sub> <sup>2–</sup> | $Cr_2O_7^{2-}$ | 2,6-DC-4-NA |
|-----------|------------------|-----------|--------------------------------|----------------|-------------|
| Test 1    | 630              | 420       | 380                            | 250            | 57          |
| Test 2    | 618              | 430       | 389                            | 248            | 57          |
| Test 3    | 625              | 429       | 385                            | 251            | 56          |
| Mean (µM) | 624              | 426       | 384                            | 250            | 57          |
| RSD (%)   | 0.97             | 1.29      | 1.17                           | 0.61           | 1.02        |

| Test      | Fe <sup>3+</sup> | MnO <sub>4</sub> - | CrO4 <sup>2-</sup> | $Cr_2O_7^{2-}$ | 2,6-DC-4-NA |
|-----------|------------------|--------------------|--------------------|----------------|-------------|
| Test 1    | 710              | 390                | 350                | 290            | 52          |
| Test 2    | 704              | 392                | 351                | 285            | 52          |
| Test 3    | 715              | 399                | 355                | 290            | 53          |
| Mean (µM) | 710              | 394                | 352                | 288            | 52          |
| RSD (%)   | 0.78             | 1.20               | 0.75               | 1.00           | 1.10        |

Table S8. The repeated test and relative standard deviation of detection limit of CP 2.

Table S9. The repeated test and relative standard deviation of detection limit of CP 3.

| Test      | Fe <sup>3+</sup> | $MnO_4^-$ | CrO4 <sup>2-</sup> | $Cr_2O_7^{2-}$ | 2,6-DC-4-NA |
|-----------|------------------|-----------|--------------------|----------------|-------------|
| Test 1    | 730              | 510       | 550                | 780            | 51          |
| Test 2    | 727              | 510       | 545                | 772            | 51          |
| Test 3    | 734              | 524       | 550                | 791            | 52          |
| Mean (µM) | 730              | 515       | 548                | 781            | 51          |
| RSD (%)   | 0.48             | 1.57      | 0.53               | 1.22           | 1.13        |

## References

[S1] M. Sarkar, K. Biradha, Cryst. Growth Des., 2006, 6, 202–208.

[S2] C. D. Si, D. C. Hu, Y. Fan, Y. Wu, X. Q. Yao, Y. X. Yang, J. C. Liu, Cryst. Growth Des., 2015, 15, 5, 2419–2432.

[S3] Y. J. Mu, Y. G. Ran, B. B. Zhang, J. L. Du, C. Y. Jiang, J. Du, Cryst. Growth Des., 2020, 20, 9, 6030–6043.

[S4] B. Dutta, A. Hazra, A. Dey, C. Sinha, P. P. Ray, P. Banerjee, M. H. Mir, Cryst. Growth Des., 2020, 20, 2, 765–776.

[S5] S. S. Chen, Z. Y. Zhang, R. B. Liao, Y. Zhao, C. Wang, R. Qiao, Z. D. Liu, Inorg. Chem., 2021, 60, 7, 4945–4956.

[S6] L. N. Zhu, Z. P. Deng, S. W. Ng, L. H. Huo, S. Gao, Dalton Trans., 2019, 48, 7589–7601.

[S7] B. Dolenský, R. Konvalinka, M. Jakubek, V. Král, J. Mol. Struct., 2013, 1035, 124-128.

[S8] L. Yang, F. Wang, D. Y. Auphedeous, C. L. Feng, Nanoscale, 2019, 11, 14210–14215.

[S9] L. Yi, F. Guo, Aust.J.Chem., 2020, 73, 21–29.

[S10] T. A. Arici, O. Z. Yesilel, M. Arici, J. Taiwan, Inst. Chem. E., 2020, 114, 300-310.

[S11] G. C. Liu, Y. Li, J. Chi, N. Xu, X. L. Wang, H. Y. Lin, B. K. Chen, J. R. Li, Dalton Trans., 2020, 49, 737–749.

[S12] T. Y. Xu, H. J. Nie, J. M. Li, Z. F. Shi, J. Solid. State. Chem., 2020, 287, 121342.