The sustainable cycle of bio-based plastic: from manufacturing to biodegradation procedure

Allan Calmont de Andrade Almeida¹, João Guilherme de Moraes Pontes¹, Gabriel Rodrigues Alvarenga¹, Henrique Finocchio^{2*}, Taicia Pacheco Fill^{1,*}

¹Universidade Estadual de Campinas (UNICAMP), Organic Chemistry, Laboratório de

Biologia Química Microbiana (LABIOQUIMI), Campinas-SP, P. O. Box 6154, 13083-

970, Brazil.

²Afinko Soluções em Polímeros, São Carlos-SP, 13570-591, Brazil.

Corresponding author: taicia@unicamp.br, henrique@afinkopolimeros.com.br

Contents

1. Manufacture of bio-based plastic and properties

Granulometric characteristics (Table S1)	S3
Torque values (Table S2)	S4
Melt Flow Index (MFI) (Table S3)	S4
Comparison between mechanical properties (Table S4)	S5

2. Fungi used in biodegradation study

Phylogenetic analysis of Colletotrichum gloeosporioides			
Cultures in different stages (after 45 and 75 days)	S 7		

3. LC-MS/MS of metabolites produced by fungi

LC-MS/MS data of 2-hydroxyacorenone	S 8
LC-MS/MS data of zearalenone	S10
LC-MS/MS data of zearalenone sulfate	S12
LC-MS/MS data of aurofusarin	S14

4. LC-MS/MS of the biodegradation process

LC-MS/MS data of theombromine	S16
LC-MS/MS data of caffeine	S17
Relative quantification (Table S5)	S18

1. Manufacture of bio-based plastic and properties

Smaller than 0.5 mm	Iller than 0.5 mm 0.5 to 1.0 mm 1.0 to 2.		Bigger than 2.0 mm		
Mass percentage	of each granulometr	ic essay of the total p	owder obtained (%)		
13.5 24.1		46.3	16.2		
	Bulk Density (g/cm ³)				
0.42 0.44		0.45	Not acquired		
Real Density (g/cm ³)					
1.442 1.445		1.515	Not acquired		
	Stacki	ng Factor			
0.57	0.50	0.46	Not acquired		

 Table S1. Granulometric characteristics of the cocoa bean shell powder

Table S2. Torque values for the thermoplastics and the mixtures at the end of the essay of bio-based plastics manufactured with polypropylene (PP) and polyethylene (PE) in different compositions

Composition (PP)	Torque (N.m)	Composition (PE)	Torque (N.m)	
PP100	3.3	PE100	8.8	
PP80/20 (1) ^a	3.7	PE80/20 (1)	10.0	
PP60/40 (1)	5.8	PE60/40 (1)	14.2	
PP60/40c ^b (1)	5.8	PE60/40c (1)	16.0	
PP80/20 (2) ^c	3.9	PE80/20 (2)	9.8	
PP60/40 (2)	6.1	PE60/40 (2)	14.6	
PP60/40c (2)	5.8	PE60/40c (2)	15.2	

^a The number (1) indicates a granulometry of cocoa shells up to 0.5 mm (see Table S1). ^b The letter c indicates the addition of a compatibilizing agent.

^c The number (2) indicates a granulometry of cocoa shells between 0.5 to 2.0 mm (see Table S1).

Table S3. Melt Flow Index (MFI) results for extruded samples of bio-based plastics manufactured with polypropylene (PP) and polyethylene (PE) in different compositions

PP-based samples	MFI 230 °C / 2.16 kg (g/10 min)
PP100	27.7 ± 0.1
PP80/20	19.5 ± 0.3
PP80/20ca	16.8 ± 0.2
HDPE-based samples	MFI 190 °C / 2.16 kg (g/10 min)
HDPE-based samples PE100	MFI 190 °C / 2.16 kg (g/10 min) 7.2 ± 0.1
HDPE-based samples PE100 PE80/20	MFI 190 °C / 2.16 kg (g/10 min) 7.2 ± 0.1 5.4 ± 0.1

^a The letter c indicates the addition of a compatibilizing agent.

Sample	nple Young's modulus (GPa) Tensile Strength (MPa)		Elongation (%)	
PP100	0.97 ± 0.09	17.9 ± 0.4	20.2 ± 2.9	
PP80/20	1.13 ± 0.37	15.5 ± 0.1	3.9 ± 0.3	
PP80/20c ^a	1.25 ± 0.17	15.1 ± 0.3	3.4 ± 0.6	
PE100	1.37 ± 0.05	25.5 ± 0.4	418.9 ± 4.4	
PE80/20 1.14 ± 0.10		22.5 ± 0.3	7.6 ± 1.2	
PE80/20c	1.9 ± 0.21	20.5 ± 0.3	8.1 ± 1.1	

Table S4. Comparison between mechanical properties of bio-based plastics manufactured with polypropylene (PP) and polyethylene (PE) in different compositions

^a The letter c indicates the addition of a compatibilizing agent.

2. Fungi used in biodegradation study

Colletotrichum gloeosporioides

> consensus 1649/17 - DRM 03

Figure S1. Partial sequence of the ribosomal operon of C4 (*Colletotrichum gloeosporioides*). Analyses performed at CPQBA.

Figure S2. Phylogenetic tree demonstrating the relationships between the partial sequence of the ribosomal operon region ITS1-5.8S-ITS2 of C4 (*Colletotrichum gloeosporioides*) and sequences of strains of related microorganisms present in the databases CBS and Genbank. Analyses performed at Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA).

Figure S3. C. gloeosporioides, Xylaria sp. and F. graminearum cultures in different stages a) C. gloeosporioides (control) b) C. gloeosporioides-polymer interaction after 45 days c) C. gloeosporioides-polymer interaction after 75 days (frontal side) d) C. gloeosporioides-polymer interaction after 75 days (back side) e) Xylaria sp. (control) f) Xylaria sp.-polymer interaction after 45 days g) Xylaria sp.-polymer interaction after 75 days (back side) i) F. graminearum (control) j) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (frontal side) k) F. graminearum-polymer interaction after 75 days (back side).

2-HYDROXYACORENONE

Figure S4. Ion chromatogram extracted (m/z 237.1843) to a) polymeric control; b) fungal control; c) *F. graminearum* biodegradation. LC-MS/MS spectrum of 2-hydroxyacorenone was found at retention time 5.45 min.

2-HYDROXYACORENONE - m/z 237.1852 [M+H]*

(HMDB) predicted spectrum	Experimental m/z	Error (ppm)	Formula Xcalibur	
53.0391	53.0392	0.42	CH5	
55.0548	55.0549	0.58	58 C4 H7	
57.0704	57.0341	0.39	C ₃ H ₅ O	
67.0548	67.0548	0.53	C ₅ H ₇	
79.0547	79.0547	0.29	C ₆ H ₇	
81.0704	81.0703	0.44	C ₆ H ₉	
109.1017	109.1013	0.13	C ₈ H ₁₃	
121.1017	121.1012	0.01	0.01 C ₉ H ₁₃	
123.1173	123.1169	0.13	0.13 C ₉ H ₁₅	
135.1173	135.1164	0.53	C10H15	
151.1122	151.1116	-0.09	C10H15O	

2-Hydroxyacorenone (C₃₀H₁₈O₁₂)

Figure S5. LC-MS/MS spectrum of 2-hydroxyacorenone and comparison of experimental m/z values with predicted spectrum from HMDB (https://hmdb.ca/spectra/ms ms/81872).

ZEARALENONE

Figure S6. Ion chromatogram extracted (m/z 319.1540) to a) polymeric control; b) fungal control; c) *F. graminearum* biodegradation. LC-MS/MS spectrum of zearalenone was found at retention time 8.21 min.

ZEARALENONE - m/z 319.1541 [M+H]*

Figure S7. LC-MS/MS spectra in positive ionization mode to a) Authentic standard of zearalenone; b) *F. graminearum* biodegradation.

ZEARALENONE SULFATE

Figure S8. Ion chromatogram extracted (m/z 399.1108) to a) polymeric control; b) fungal control; c) *F. graminearum* biodegradation. LC-MS/MS spectrum of zearalenone sulfate was found at retention time 6.37 min.

Figure S9. LC-MS/MS spectra comparison between **a**) zearalenone (m/z 319.1541); **b**) zearalenone sulfate (m/z 399.1108); **c**) the aduct [M+NH₄]⁺ (m/z 416.1374).

Figure S10. Ion chromatogram extracted (m/z 571.0869) to a) polymeric control; b) fungal control; c) *F. graminearum* biodegradation. LC-MS/MS spectrum of aurofusarin was found at retention time 8.15 min.

AUROFUSARIN - m/z 571.0871 [M+H]*

Figure S11. LC-MS/MS spectrum of aurofusarin for 35 V and comparison of experimental m/z values with database MassBank (https://massbank.eu/MassBank/RecordDisplay?id=AC000703).

4. LC-MS/MS of the biodegradation process

Figure S12. Chromatograms of control sample and biodegradation process using *Colletotrichum gloeosporioides*. m/z 181.0720 (positive mode) is related to theobromine and was found at retention time 2.12 min.

Figure S13. LC-MS/MS (m/z 180.9842) in positive mode of control sample related to theobromine. Putatively annotated compound in comparison to the Human Metabolome Database (<u>https://hmdb.ca/spectra/ms_ms/240224</u>).

Figure S14. Chromatograms of control sample, fungal extract of *Colletotrichum* gloeosporioides and biodegradation process. m/z 195.0877 (positive mode) is related to caffeine and was found at retention time 6.18 min.

Figure S15. LC-MS/MS (m/z 195.0090) in positive mode of control sample related to caffeine. Putatively annotated compound in comparison to the Human Metabolome Database (https://hmdb.ca/spectra/ms_ms/21351).

Compo unds	Measure ments	Control	C. gloeosporioides	F. graminearum	<i>Xylaria</i> sp.
	1	685,709,819	1,315,828,545	2,124,585,302	627,888,072
Theshar	2	757,268,190	1,401,761,320	2,423,704,429	426,625,349
Theobro	3	609,340,610	1,320,908,933	1,807,587,535	426,625,349
mine	average	684,106,206	1,346,166,266	2,118,625,755	493712923,3
	ļ ļ	v-values	0.001	0.009	0.137
	1	336,773,908	1,289,410,747	2,182,693,125	636,269,338
Caffeine	2	432,731,451	1,451,127,228	1,817,805,552	495,072,588
	3	256,969,237	1,113,455,339	1,668,742,221	495,072,588
	average	342,158,198	1,284,664,438	1,889,746,966	542,138,171
	p	v-values	0.0006	0,0025	0.0266

Table S5. Relative quantification of peaks on LC-MS/MS spectra of the obromine (m/z 181.0720, r.t. 2.12 min) and caffeine (m/z 195.0877, r.t. 6.18 min) after 75 days of biodegradation