Supplemental Material – First-principles study on structural, electronic and optical properties of perovskite solid solutions $KB_{1-x}Mg_xI_3$ (B = Ge, Sn) toward water splitting photocatalysis

Chol-Hyok Ri^a, Yun-Sim Kim^a, Un-Gi Jong^a, Yon-Hyok Kye^a, Se-Hun Ryang^b and Chol-Jun Yu^a*

^a Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong,

Taesong District, Pyongyang, PO Box 76, Democratic People's Republic of Korea

^b Chair of Theoretical Physics, Faculty of Physics, Kim Hyong Jik University of Education, Ryul-Dong,

Dongdaewon District, Pyongyang, Democratic People's Republic of Korea

Computational details for mechanical property

We determined the bulk and shear moduli using the stiffness constants within the Voigt approximation as follows,

$$B_{\rm V} = \frac{2C_{11} + C_{33} + 2(C_{12} + 2C_{13})}{9},$$

$$G_{\rm V} = \frac{2C_{11} + C_{33} - (C_{12} + 2C_{13}) + 3(2C_{44} + C_{66})}{15}$$
(1)

Within Reuss approximaion, we could also be calculated using the compliance constants as follows,

$$B_{\rm R} = \frac{1}{2S_{11} + S_{33} + 2(S_{12} + 2S_{13})},$$

$$G_{\rm R} = \frac{15}{4(2S_{11} + S_{33}) - 4(S_{12} + 2S_{13}) + 3(2S_{44} + S_{66})}$$
(2)

Within Hill approximation, the real moduli are estimated by average values as follows,

$$B = \frac{B_{\rm V} + B_{\rm R}}{2}, G = \frac{G_{\rm V} + G_{\rm R}}{2}$$
(3)

Then, the Young's modulus and Poisson's ratio (ν) are estimated from the calculated bulk and shear moduli as follows,

$$E = \frac{9BG}{3B+G}, \nu = \frac{3B-2G}{6B+2G}$$
(4)

We determined the longitudinal (v_l) and transverse (v_t) elastic wave velocities with elastic moduli as follows,

$$\upsilon_l = \sqrt{\frac{3B + 4G}{3\rho}}, \upsilon_t = \sqrt{\frac{G}{\rho}}$$
(5)

where ρ is the density. With these values, we evaluated the average sound velocity v_m as follows,

$$\nu_m = \left[\frac{1}{3} \left(\frac{2}{\nu_t^3} + \frac{1}{\nu_l^3}\right)\right]^{-1/3} \tag{6}$$

With the following relation, we estimated the Debye temperature θ_D , which is an very important parameter for checking the degree of mechanical properties,

$$\theta_{\rm D} = \frac{h}{k_{\rm B}} \left[\frac{3N}{4\pi V} \right]^{1/3} \upsilon_m \tag{7}$$

where h and $k_{\rm B}$ are the Plank's and Boltzmann's constants, N the number of atoms in the unit cell and V the unit cell volume.

^{*}Corresponding author: Chol-Jun Yu, Email: cj.yu@ryongnamsan.edu.kp

Table S1. Lattice constants (a, b, c) and lattice angle (α) of CsGeI₃ and CsSnI₃, calculated with PBE functional.

	Lattice	Lat	tice angle (de	eg)		
Space group	Our cal.	Other cal.	Exp.	Our cal.	Other cal.	Exp.
R3m	a = b = c = 5.93	6.13 ^{<i>a</i>}	5.98^{b}	88.67	88.28 ^a	88.60^{b}
Pnma	a=8.60, b=8.62, c=12.41	-	8.69, 8.64, 12.38 ^c	-	-	-
	Space group R3m Pnma	LatticeSpace groupOur cal. $R3m$ $a = b = c = 5.93$ $Pnma$ $a=8.60, b=8.62, c=12.41$	Lattice constants(A)Space groupOur cal.Other cal. $R3m$ $a = b = c = 5.93$ 6.13^a $Pnma$ $a=8.60, b=8.62, c=12.41$ $-$	Lattice constants(A)Space groupOur cal.Other cal.Exp. $R3m$ $a = b = c = 5.93$ 6.13^a 5.98^b Pnma $a=8.60, b=8.62, c=12.41$ $ 8.69, 8.64, 12.38^c$	Lattice constants(A)Lattice constants(A)Space groupOur cal.Other cal.Exp.Our cal. $R3m$ $a = b = c = 5.93$ 6.13^a 5.98^b 88.67 Pnma $a=8.60, b=8.62, c=12.41$ $ 8.69, 8.64, 12.38^c$ $-$	Lattice constants(A)Lattice angle (deSpace groupOur cal.Other cal.Exp.Our cal.Other cal. $R3m$ $a = b = c = 5.93$ 6.13^a 5.98^b 88.67 88.28^a Pnma $a=8.60, b=8.62, c=12.41$ $ 8.69, 8.64, 12.38^c$ $ -$

^aCalculated with the PBE functional [1]

^bRef. [2]

^cRef. [3]

Table S2. Band gaps (unit: eV) in CsGeI₃, CsSnI₃, CsMgI₃ calculated with PBE and HSE06 functionals with and without SOC effect. Cal. and Exp. stand for calculation and experiment.

		C				
Compound	PBE	PBE+SOC	HSE06	HSE06+SOC	Other cal.	Exp.
CsMgI ₃	1.40	1.31	2.08	1.44	1.7 (LDA), 3.4 (GW) ^a	
CsGeI ₃	0.89	0.82	1.64	1.54	1.41^{b}	1.63^{d}
CsSnI ₃	0.80	0.71	1.28	1.12	0.50^{c}	1.30^{e}
^a Ref. [4]						

^bHSE06+SOC [1]

^cLDA [6]

 d Ref. [5]

^eRef. [7]

Table S3. Elastic stiffness constants (C_{ij}), bulk modulus (B), shear modulus (G), Young's modulus (E), Pugh's ratio (B/G), and Poisson's ratio (ν) of the systems, calculated with PBE functional.

		Elastic stiffness constant (GPa)				Elastic	modulus	s (GPa)				
System	x	C_{11}	C_{12}	C_{13}	C_{33}	C_{44}	C_{66}	В	G	Ε	B/G	ν
	0.00	262.2	162.5	97.1	431.9	150.8	73.0	184.2	103.9	262.4	1.772	0.263
	0.25	266.1	157.8	111.6	400.0	133.4	76.7	187.1	98.5	251.4	1.900	0.276
$KGe_{1-x}Mg_xI_3$	0.50 (I)	263.9	153.2	122.5	380.9	126.8	82.8	188.3	96.3	246.9	1.954	0.281
	0.50 (II)	274.6	155.0	127.4	352.3	117.3	83.0	190.8	91.9	237.6	2.075	0.292
	0.75	278.9	150.0	132.3	348.0	111.0	89.3	192.3	92.7	239.7	2.073	0.292
	1.00	279.5	142.5	141.3	345.9	102.6	99.2	194.1	91.7	237.7	2.117	0.296
	0.00	207.2	163.8	72.1	423.3	108.8	47.3	159.7	71.3	186.1	2.241	0.306
	0.25	221.4	161.7	90.2	397.6	104.8	54.8	167.9	74.2	193.9	2.264	0.308
$KSn_{1-x}Mg_xI_3$	0.50 (I)	223.2	158.9	105.5	391.9	103.5	60.6	173.4	73.5	193.1	2.360	0.314
	0.50 (II)	241.1	153.9	114.7	353.4	109.3	66.5	177.1	78.1	204.4	2.266	0.308
	0.75	258.8	152.3	122.1	346.6	103.1	73.1	183.5	78.9	207.1	2.325	0.312
	1.00	279.5	142.5	141.3	345.9	102.6	99.2	194.1	91.7	237.7	2.117	0.296

Table S4. Elastic compliance constants (unit: GPa⁻¹).

System	x	S_{11}	S 12	S 13	S 33	S 44	S 66
	0.00	0.006	-0.004	-0.001	0.003	0.007	0.014
	0.25	0.006	-0.003	-0.001	0.003	0.008	0.013
$KGe_{1-x}Mg_xI_3$	0.50 (I)	0.006	-0.003	-0.001	0.003	0.008	0.012
	0.50 (II)	0.006	-0.003	-0.001	0.004	0.009	0.012
	0.75	0.005	-0.002	-0.001	0.004	0.009	0.011
	1.00	0.005	-0.002	-0.001	0.004	0.010	0.010
	0.00	0.013	-0.010	0.000	0.003	0.009	0.021
	0.25	0.010	-0.007	-0.001	0.003	0.010	0.018
$KSn_{1-x}Mg_xI_3$	0.50 (I)	0.009	-0.006	-0.001	0.003	0.010	0.016
	0.50 (II)	0.008	-0.005	-0.001	0.003	0.011	0.015
	0.75	0.006	-0.003	-0.001	0.004	0.010	0.019
	1.00	0.005	-0.002	-0.001	0.004	0.010	0.010

Table S5. Elastic moduli within Reuss (B_R and G_R) and Voigt (B_V and G_V) approximation (unit: GPa), and longitudinal (v_l) and transverse (v_t) elastic wave velocities, average sound velocity (v_m) (unit: m/s) and Debye temperature θ_D (unit: K).

System	x	B_R	G_R	B_V	G_V	v_l	v_t	v_m	$\theta_{\rm D}$
	0.00	182.81	92.94	185.50	114.88	8969.4	5089.4	5658.9	489.5
	0.25	186.04	91.54	188.23	105.44	8967.9	4987.3	5554.2	482.4
$KGe_{1-x}Mg_xI_3$	0.50 (I)	187.08	91.36	189.49	101.32	9004.4	4966.0	5534.0	482.5
	0.50 (II)	190.34	87.60	191.23	96.28	8946.6	4846.0	5407.6	471.8
	0.75	191.78	90.46	192.77	95.01	9038.7	4897.1	5464.6	479.0
	1.00	193.28	90.55	195.00	92.84	9105.5	4901.8	5472.4	481.9
	0.00	157.83	54.22	161.53	88.30	8112.4	4291.1	4796.5	397.9
	0.25	166.42	62.19	169.40	86.11	8316.2	4384.4	4902.0	412.4
$KSn_{1-x}Mg_xI_3$	0.50 (I)	171.38	65.22	175.34	81.73	8420.5	4381.8	4903.4	417.9
	0.50 (II)	176.17	69.10	178.02	87.19	8541.9	4502.3	5033.8	430.0
	0.75	182.93	73.48	184.13	84.37	8684.2	4540.1	5079.0	440.1
	1.00	193.28	90.55	195.00	92.84	9105.5	4901.8	5472.4	481.9

Table S6. Band gaps (unit: eV) calculated with different levels of DFT method.

Systme	x	PBE	PBE+SOC	HSE06	HSE06+SOC	Other cal. ^a
	0.00	0.851	0.615	1.238	1.041	1.08
	0.25	1.227	1.059	1.713	1.551	
$KGe_{1-x}Mg_xI_3$	0.50 (I)	1.486	1.264	2.110	1.916	
	0.50 (II)	2.057	1.955	2.679	2.648	
	0.75	2.232	2.153	3.044	2.994	
	1.00	1.981	1.892	2.920	2.801	
	0.00	0.658	0.593	1.070	1.021	0.97
	0.25	1.075	0.944	1.541	1.393	
$KSn_{1-x}Mg_xI_3$	0.50 (I)	1.066	1.047	1.659	1.640	
	0.50 (II)	2.008	1.923	2.607	2.595	
	0.75	2.295	2.064	2.886	2.862	
	1.00	1.981	1.892	2.920	2.801	

^{*a*}GLLB-SC calculation [8]

Table S7. Fitting parameters (unit: eV) of band gaps calculated with HSE06 to quadratic function of $E_g(x) = E_g(0) + [E_g(1) - E_g(0) - b]x + bx^2$.

-g(*) · L-	g(-) —g	(°) °].	
System	$E_{g}(0)$	$E_{g}(1)$	b
$KGe_{1-x}N$	Ig_xI_3		
Ι	1.172	3.050	-0.755
II	1.123	3.001	-2.056
$KSn_{1-x}M$	$[g_xI_3]$		
Ι	1.040	3.058	0.269
II	0.959	2.977	-1.898

Figure S1. Crystalline structures of $KSn_{1-x}Mg_xI_3$ with x = 0, 0.25, 0.5 (I, II), 0.75, and 1, optimized with PBE functional.

Figure S2. Linear relation of volume with density in $KB_{1-x}Mg_xI_3$ (B = Ge, Sn).

Figure S3. Partial density of states (DOS) of KGeI₃, KSnI₃ and KMgI₃.

Figure S4. Fitting the band gaps calculated with HSE06 to the quadratic function for $KB_{1-x}Mg_xI_3$ (B = Ge, Sn) with x = 0, 0.25, 0.5 (I, II), 0.75, and 1. Dashed lines show the calculated values, and solid lines show the quadratic fitting functions.

Figure S5. Phonon dispersion curves and the atom-resolved phonon DOS for (a) $KGe_{0.5}Mg_{0.5}I_3$ (I), (b) $KGe_{0.5}Mg_{0.5}I_3$ (II), (c) $KSn_{0.5}Mg_{0.5}I_3$ (I), (d) $KSn_{0.5}Mg_{0.5}I_3$ (II).

Figure S6. (a), (c) Real parts and (b), (d) imaginary parts of frequency-dependent dielectric constants of $KB_xMg_{1-x}I_3$ (B = Ge, Sn) with x = 0, 0.25, 0.5 (I, II), 0.75 and 1, calculated with PBE functional.

References

- [1] G. Walters, E. H. Sargent, J. Phys. Chem. Lett., 2018, 9, 1018-1027.
- [2] L. C. Tang, J. Y. Huang, C. S. Chang, M. H. Lee, L. Q.Liu, J. Phys.: Condens. Matter, 2005, 17, 7275-7286.
- [3] I. Chung, J.-H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc., 2012, 134, 8579–8587.
- [4] M. R. Filip, F. Giustino, J. Phys. Chem. C, 2016, 120, 166–173.
- [5] T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, L. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar, J. Mater. Chem. A, 2015, 3, 23829–23832.
- [6] L.-y. Huang, W. R. L. Lambrecht, Phys. Rev. B, 2013, 88, 165203.
- [7] Z. Chen, C. Yu, K. Shum, J. J. Wang, W. Pfenninger, N. Vockic, J. Midgley, and J. T. Kenney, J. Lumin., 2012, 132, 345.
- [8] X. Mao, L. Sun, T. Wu, T. Chu, W. Deng, K. Han, J. Phys. Chem. C, 2018, 122, 7670–7675.