Supplementary Information for

Rapid Separation and Purification of Lead Halide Perovskite Quantum Dots through Centrifugation in Nonpolar Solvent

Shu Zhou^{†,‡},*

[†] School of Materials, Sun Yat-sen University, Guangzhou 510275, China

[‡] Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong

E-mail: *zhoush67@mail.sysu.edu.cn

Figure S1. Crude solutions (from left to right, toluene, hexane, chlorobenzene) of (a,b) MAPbI₃, (c,d) MAPbBr₃ and (e,f) FAPbI₃ perovskite quantum dots (QDs) under ambient light and UV light.

Figure S2. Absorption spectra of crude solutions of FAPbI₃ perovskite QDs.

Figure S3. FTIR spectrum of halide perovskite QDs showing extensive alky termination of the QD surface.

Figure S4. UV-vis absorption of (a) toluene, (b) chlorobenzene and (c) hexane solutions of MAPbI₃ perovskite QDs and the same solutions after stored in air for 6 days and 20 days, respectively.

Figure S5. (a) Intensity profile and (b) shift of the PL peak for hexane solutions of MAPbI₃ and MAPbBr₃ QDs.

As the storage time increases it can be seen that the PL intensity drops by 6% for MAPbI₃ hexane solution which is smaller than that of MAPbBr₃ hexane solution (19%). By contrast, the PL wavelength of MAPbI₃ hexane solution shifts from 652 nm to 668 nm, which is much larger than that of MAPbBr₃ hexane solution (from 522 nm to 519 nm). Thus, it may be not accurate to state that the stability of MAPbI₃ hexane solution is better than that of MAPbBr₃ hexane solution.

Figure S6. Schematic showing the different transformation processes of MAPbI₃ and MAPbBr₃ QDs in the solvents during the course of storage in air.

Figure S7. (a-b) TEM image and the corresponding size analysis of monodisperse CsPbBr₃ perovskite QDs obtained by differenial centrifugation. (c) UV-vis absorption and PL spectra of CsPbBr₃ QD solution after storing in air for 6 days.

Figure S8. (a) Image of hexane solution of FAPbBr₃ perovskite QDs under UV light. (b) UV-vis absorption and (c) PL spectra of FAPbBr₃ perovskite QDs solution and the same solution after 12 h storage in air. Inset shows images of hexane solution of FAPbBr₃ perovskite QDs and the same solution after 12 h storage in air.

Figure S9. Schematic of photoemission spectroscopy of the perovskite QD samples. Free electrons with certain kinetic energy (E_{kin}) generated by external photoelectric effect depends on the exciting photon energy (hv), the ionization energy (E_{ion}) (or the work function (Φ_s)) of the sample, the binding energy (E_b) of the excited electron, and inelastic scattering processes in the sample.

Figure S10. UPS spectra of MAPbI₃, MAPbBr₃ and CsPbBr₃ perovskite QDs with different sizes. The location of Fermi level can be obtained from the secondary cutoff spectra.

Figure S11. UPS spectra of (a) MAPbI₃, (b) MAPbBr₃ and (c) CsPbBr₃ perovskite QDs with different sizes. The location of HOMO level can be determined from the valence-band maximum (VBM) of the valence band spectra.