Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting information

Red to orange thermally activated delayed fluorescence polymers based on 2-(4-(diphenylamino)-phenyl)-9*H*-thioxanthen-9-one-10,10-dioxide for efficient solution-processed OLEDs

Praetip Khammultri,^a Pongsakorn Chasing,^a Chirawat Chitpakdee,^b Supawadee Namuangruk,^b Taweesak Sudyoadsuk,^a and Vinich Promarak^{*ac}

^a Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand. E-mail: <u>vinich.p@vistec.ac.th</u>

^b National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand.

^c Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand.

Additional characterization data

Fig. S1 ATR FTIR spectra of the polymers

Fig. S2 600 MHz 1H-NMR spectra (CDCl₃) of the polymers

Fig. S3 GPC traces of the polymers in THF at 35 °C with RI detector using polystyrene linear standards for calibration.

Fig. S4 PL spectra and transient PL decay spectra of air-saturated and degassed polymer toluene solutions

Fig. S5 Transient PL decay spectra of the polymers 5 wt% doped mCP films at room temperature.

Fig. S6 Transient PL decay spectra of the polymers **PCTXO-Fx** 1 wt% doped in mCP:Zeonex film recorded at various temperatures in N₂.

Fig. S7 Fluorescence (Fl) and phosphorescence (Ph) spectra of the polymers **PCTXO-Fx** 1 wt% doped in Zeonex film recorded at 300 K and 77 K.

Fig. S8 TGA and DSC thermograms of PCTXO/PCTXO-Fx measured N₂ flow at heating rate of 10 °C min⁻¹.

Fig. S9 Photoelectron spectroscopy in air (PESA) spectra of the polymers.

Fig. S10 Current density-voltage-luminance (J-V-L) characteristics of the non-doped OLEDs (devices I-IV).

Fig. S11 PL and transient PL decay spectra of PCTXO and PCTXO-Fx doped in mCP films.

Fig. S12 AFM images of the neat and PCTXO-F75, PCTXO-F50, PCTXO-F25, PCTXO films and PCTXO-F25 and PCTXO-F50 5 wt% doped in mCP films.

Fig. S13 EL spectra of PCTXO-Fx-based OLEDs (devices VI-VIII) at different applied voltages

Fig. S14 Copies of NMR spectra and HRSM spectra of the intermediates. **Compound 2**

