SUPPLEMENTARY INFORMATION

EXCESS CHEMICAL POTENTIAL OF THIOPHENE IN [C₄MIM] [BF₄, Cl, Br, CH₃COO] IONIC LIQUIDS, DETERMINED BY MOLECULAR SIMULATIONS

Marco V. Velarde-Salcedo^a, Joel Sánchez-Badillo^b, <u>Marco Gallo</u>*^c and Jorge López-Lemus^a

^aFacultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No.100, Col. Centro, CP 50000 Toluca, Estado de México, México.

^bFacultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Fco. J. Múgica S/N, Morelia, Michoacán, C. P. 58030, México.

^cTecnologico Nacional de México/ITCJ, Av. Tecnológico 1340, Cd. Juárez, Chihuahua 32500, México.

1. Structural analysis of thiophene in Ionic liquids, performed with the TRAVIS software.^{1, 2}

Figure S1. Atomic labels for (a) Thiophene, (b) 1-butyl-3-methylimidazolium ($[C_4mim]^+$) cation, (c) tetrafluoroborate ($[BF_4]^-$) anion, (d) chloride ($[C1]^-$) anion, (e) bromide ($[Br]^-$) anion, and (f) acetate ($[CH_3COO]^-$) anion.

Figure S2. Radial distribution functions involving thiophene atoms paired with atoms from the IL ions, (a) AIMD simulations in the $[C_4mim][BF_4]$ IL, (b) MD simulations in the $[C_4mim][BF_4]$ IL, (c) AIMD simulations in the $[C_4mim][Br]$ IL, (d) MD simulations in the $[C_4mim][Br]$ IL; the solid blue line corresponds to the S_{TIO}-anion interaction, the solid red line refers to the S_{TIO}-H₁ interaction, and the dashed red line refers to the S_{TIO}-H_{2,3} interaction.

Figure S3. Radial distribution functions between imidazolium side chain-hydrogen atoms (H₁₀₋₁₅) paired with the thiophene sulfur atom (S_{TIO}), (a) AIMD simulations in the [C₄mim][BF₄] IL, (b) MD simulations in the [C₄mim][BF₄] IL, (c) AIMD simulations in the [C₄mim][Br] IL and (d) MD simulations in the [C₄mim][Br] IL; the blue line corresponds to the S_{TIO}-H₁₀₋₁₂ interactions, and the black line represents the S_{TIO}-H₁₃₋₁₅ interactions.

Figure S4. Close molecular environment for the thiophene molecule within the ILs extracted from AIMD simulations. (a) $[C_4mim][BF_4]$ IL and (b) $[C_4mim][Br]$ IL. The molecular representations were created with the VMD program;³ and all distances are measured in angstroms.

Figure S5. RDFs for the Thiophene-[C4mim][C1] system, obtained at 300 K and 343.15 K.

Figure S6. RDFs for the Thiophene-[C₄mim][CH₃COO] system, obtained at 300 K and 343.15 K.

Figure S7. RDFs for the Thiophene-[C₄mim][BF₄] system, obtained at 300 K and 343.15 K.

Figure S8. RDFs for the Thiophene-[C₄mim][Br] system, obtained at 300 K and 343.15 K.

Figure S9. Combined distribution functions (CDFs) for two distances, the first distance involves thiophene-cation interactions and the second distance comprises thiophene-anion interactions (a) [C₄mim][BF₄] IL and (b) [C₄mim][Br] IL; the corresponding RDFs are also displayed at the top and right side of each figure. The number of occurrences was normalized.

Figure S10. Combined distribution functions (CDF) for the center-of-ring (COR) angle θ and distance *d* between thiophene and the IL cations for (a) [C₄mim][BF₄] IL and (b) [C₄mim][Br] IL. The number of occurrences was normalized.

Figure S11. Combined distribution functions (CDFs) between hydrogen (H_{1-4TIO}) atoms from thiophene paired with negative atoms within the IL anion (a) [C₄mim][Cl] IL and (b) [C₄mim][CH₃COO] IL. The corresponding RDFs are also displayed at the top and right sides in each figure. The number of occurrences was normalized.

Figure S12. Combined distribution functions (CDFs) between the sulfur (S_{TIO}) atom from thiophene and hydrogen atoms within the imidazolium ring for **(a)** [C₄mim][Cl] IL and **(b)** [C₄mim][CH₃COO] IL. The corresponding RDFs are also displayed at the top and right side of each figure. The number of occurrences was normalized.

Figure S13. Combined distribution functions (CDFs) for the thiophene hydrogen (H_{1-4TIO}) atoms and negative atoms within the IL anion for (a) [C_4 mim][BF4] IL and (b) [C_4 mim][Br] IL. The corresponding RDFs are also displayed at the top and right sides of each figure. The number of occurrences was normalized.

Figure S14. Combined distribution functions (CDFs) for thiophene sulfur (S_{TIO}) atom and top (H_1) and bottom ($H_{2,3}$) hydrogen atoms in imidazolium ring for (**a**) [C₄mim][BF₄] IL and (**b**) [C₄mim][Br] IL. The corresponding RDFs are also displayed at the top and right side of each figure. The number of occurrences was normalized.

Figure S15. Averaged noncovalent interactions between the thiophene molecule and ILs, (a) aNCI surface, (b) TFI index, and (c) reduced electronic density gradient (s) vs density plot in the thiophene-[C₄mim][BF₄] system; (d) aNCI surface, (e) TFI index and (f) reduced electronic density gradient (s) vs density plot in the thiophene-[C₄mim][Br] system. The aNCI iso-surfaces correspond to s=0.4 a.u., and are colored on a BGR scale of -0.04< ρ < 0.04 a.u; TFI iso-surfaces are colored on a BGR scale within the 0 to 1.5 range.⁴

References.

- 1. M. Brehm, M. Thomas, S. Gehrke and B. Kirchner, J. Chem. Phys., 2020, 152, 164105.
- 2. M. Brehm and B. Kirchner, J. Chem. Inf. Model., 2011, **51**, 2007-2023.
- 3. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.
- 4. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.