Supporting Information for:

Long term storage of miRNA at room and elevated temperatures in silica sol-gel matrix.

Rajat Chauhan ^{a†}, Theodore S. Kalbfleisch ^a, Chinmay S. Potnis ^b, Meenakshi Bansal ^c, Mark W. Linder ^d, Robert S. Keynton ^{e*}, Gautam Gupta ^{a*}

^a Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, United States

^b Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States

^c Department of Chemistry, Thomas More University, Crestview Hills, KY, 41017.

^d Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky 40292, United States

^e William states Lee College of Engineering, University of North Carolina at charlotte, 28223, United States

* Correspondence to: gautam.gupta@louisville.edu and robert.keynton@louisville.edu

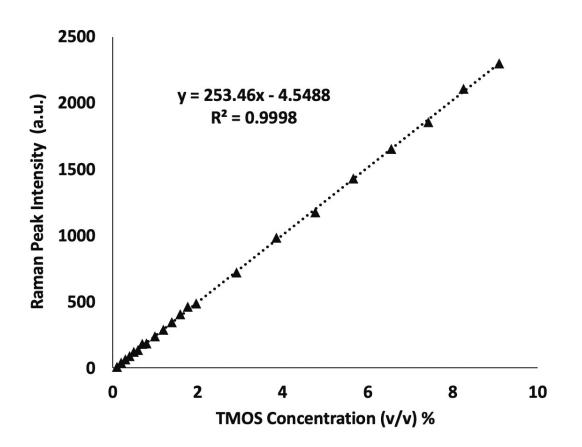


Figure. S1. Calibration Curve of Raman Peak Intensity Vs. TMOS Concentration (v/v) %: A significant increase in the raman peak intensities of methanol is demonstrated with the increase in TMOS concentrations in (0.5 - 10) v/v % range.

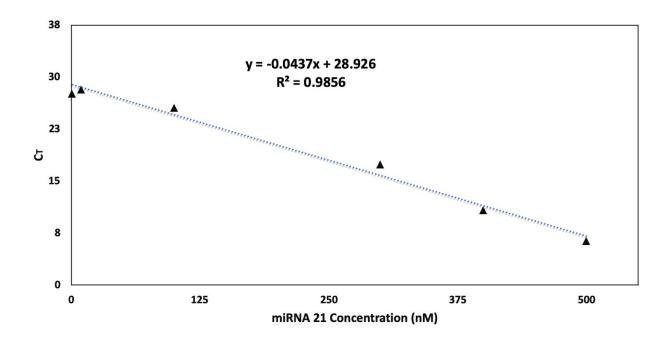


Figure. S2. miRNA 21 concentration (nM) calibration curve in CaRGOS using qRT-PCR analysis: Formulation parameters used were 0.5 v/v % CaRGOS, Low-salt Tris EDTA buffer and nuclease free water.

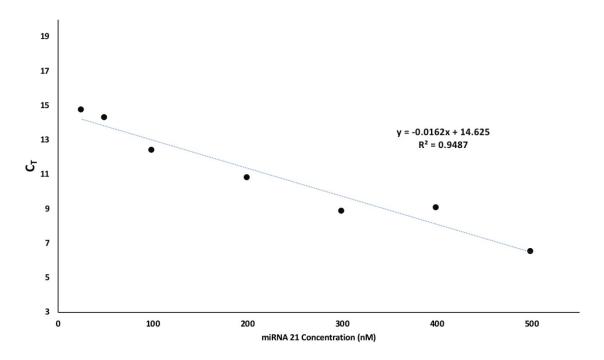


Figure.S3. miRNA 21 concentration (nM) calibration curve in nuclease free water using qRT-PCR analysis: Formulation parameters used were low-salt buffer and nuclease free water.

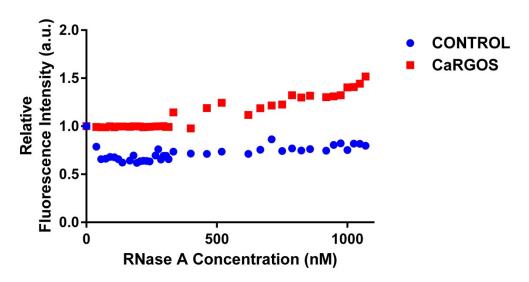


Figure. S4. A plot of relative fluorescence intensity of Ethidium bromide against RNase A concentrations in (0-1200) nM range: An increase in relative fluorescence emission intensities of EtBr was observed in (320-1200) nM RNase A concentrations range.

Table S1

Theoretical and calculated molar methanol yield : Efficiency of the hydrolysis was computed utilizing the Raman peak of methanol aqueous solutions.

TMOS (v/v %) Theoretical Methanol (mol/L)	0.5 0.1353	1.0 0.2707	5 1.3533	10 2.7066
Calculated Methanol (mol/L)	0.1311	0.2250	1.2519	2.5707
Hydrolysis Efficiency (%)	98.4	83.1	92.5	95.0

Table S2

Methanol content of hydrolyzed TMOS formulations : A significant increase in methanol concentrations is demonstrated with the increase in TMOS concentrations.

TMOS (v/v %)	Methanol Peak (Counts)	Methanol Content (v/v %)
0.5	191.0	0.74
1.0	235.3	0.91
5.0	1288.2	5.06
10.0	2640.4	10.40

[zeta notential (7)] cha		: Hydrodynamic Size (DLS), Polydispersity Index (PDI) and Stability [zeta potential (ζ)] characterization of CaRGOS.					
Sample	DLS (nm)	PDI	Zeta Potential (mV)				
CaRGOS without buffer (1.25 v/v %)	*0.79 ± 0.11	0.983 ± 0.026	-22.07 ± 1.01				
CaRGOS without buffer (0.5 v/v %)	**	**	-26.58 ± 7.69				
CaRGOS with Buffer (0.5 v/v %)	67.22 ± 1.65	0.248 ± 0.006	-10.50 ± 1.66				
CaRGOS with Buffer (0.5 v/v %) and miRNA 21	69.95 ± 0.47	$\begin{array}{c} 0.308 \pm \\ 0.004 \end{array}$	-20.04 ± 1.26				
CaRGOS with Buffer (0.5 v/v %) <i>without</i> miRNA 21	70.02 ± 2.09	0.338 ± 0.035	-22.07 ± 1.01				

*A (~1 nm) Hydrodynamic size is insignificant

****Count-rate too low for measurement**

Table S4:

Reverse Transcription (RT) reaction mixture for a 15 μ L reaction : 15 μ L reaction consists of 7 μ L master mix, 3 μ L of 5X primer and 5 μ L miRNA 21 sample (with or w/o CaRGOS).

Component	Volume (µL) per 15-µL reaction
100 mM dNTPs	0.15
MultiScribe Reverse Transcriptase, 50 U/ µL	1.00
10X Reverse Transcription Buffer	1.50
RNase Inhibitor 20 U/µL	0.19
Nuclease-free water	4.16
5X miRNA	<u>3.00</u>
Total volume(µL)	10.00

Table S5

PCR reaction mixture for a 10 μ L reaction: Each 10 μ L reaction consists of 5 μ L master mix, 0.5 μ L of 20X primer, 3.17 μ L of nuclease-free water and 1.33 μ L of cDNA (RT product).

Component	Volume (µL) per 10- µL reaction
20X miRNA Primer	0.5
Universal Master Mix	5.00
Nuclease-free water	3.17
Total Volume	8.67