Supporting Information for:

Long term storage of miRNA at room and elevated temperatures in silica sol-gel matrix.

Rajat Chauhan ${ }^{\text {a† }}$, Theodore S. Kalbfleisch ${ }^{\text {a }}$, Chinmay S. Potnis ${ }^{\text {b }}$, Meenakshi Bansal ${ }^{\text {c }}$, Mark W. Linder ${ }^{\text {d }}$, Robert S. Keynton ${ }^{\text {e* }}$, Gautam Gupta ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, United States
${ }^{\mathrm{b}}$ Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States
${ }^{\mathrm{c}}$ Department of Chemistry, Thomas More University, Crestview Hills, KY, 41017.
${ }^{\mathrm{d}}$ Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky 40292, United States
${ }^{\mathrm{e}}$ William states Lee College of Engineering, University of North Carolina at charlotte, 28223, United States

[^0]

Figure. S1. Calibration Curve of Raman Peak Intensity Vs. TMOS Concentration (v/v) \%: A significant increase in the raman peak intensities of methanol is demonstrated with the increase in TMOS concentrations in (0.5-10) v/v \% range.

Figure. S2. miRNA 21 concentration (nM) calibration curve in CaRGOS using qRT-PCR analysis: Formulation parameters used were $0.5 \mathrm{v} / \mathrm{v} \% \mathrm{CaRGOS}$, Low-salt Tris EDTA buffer and nuclease free water.

Figure.S3. miRNA 21 concentration (nM) calibration curve in nuclease free water using qRTPCR analysis: Formulation parameters used were low-salt buffer and nuclease free water.

Figure. S4. A plot of relative fluorescence intensity of Ethidium bromide against RNase A concentrations in (0-1200) nM range: An increase in relative fluorescence emission intensities of EtBr was observed in (320-1200) nM RNase A concentrations range.

Theoretical and calculated molar methanol yield : Efficiency of the hydrolysis was computed utilizing the Raman peak of methanol aqueous solutions.

TMOS (v/v \%)	0.5	1.0	5	10
Theoretical Methanol (mol/L)	0.1353	0.2707	1.3533	2.7066
Calculated Methanol (mol/L)	0.1311	0.2250	1.2519	2.5707
Hydrolysis Efficiency (\%)	98.4	83.1	92.5	95.0

Table S2
Methanol content of hydrolyzed TMOS formulations : A significant increase in methanol concentrations is demonstrated with the increase in TMOS concentrations.

TMOS (v/v \%)	Methanol Peak (Counts)	Methanol Content (v/v \%)
$\mathbf{0 . 5}$	191.0	0.74
$\mathbf{1 . 0}$	235.3	0.91
$\mathbf{5 . 0}$	1288.2	5.06
$\mathbf{1 0 . 0}$	2640.4	.10 .40

Table S3
Size and stability characterization of CaRGOS formulations
: Hydrodynamic Size (DLS), Polydispersity Index (PDI) and Stability [zeta potential ($\zeta)$] characterization of CaRGOS.
Sample DLS (nm) PDI Zeta Potential
(mV)

CaRGOS without buffer ($1.25 \mathrm{v} / \mathrm{v} \%$)	*0.79 ± 0.11	$\begin{aligned} & 0.983 \pm \\ & 0.026 \end{aligned}$	-22.07 ± 1.01
CaRGOS without buffer ($0.5 \mathrm{v} / \mathrm{v} \%$)	**	**	-26.58 ± 7.69
CaRGOS with Buffer ($0.5 \mathrm{v} / \mathrm{v} \%$)	67.22 ± 1.65	$\begin{aligned} & 0.248 \pm \\ & 0.006 \end{aligned}$	-10.50 ± 1.66
CaRGOS with Buffer ($0.5 \mathrm{v} / \mathrm{v} \%$) and miRNA 21	69.95 ± 0.47	$\begin{aligned} & 0.308 \pm \\ & 0.004 \end{aligned}$	-20.04 ± 1.26
CaRGOS with Buffer ($0.5 \mathrm{v} / \mathrm{v} \%$) without	70.02 ± 2.09	$\begin{aligned} & 0.338 \pm \\ & 0.035 \end{aligned}$	-22.07 ± 1.01

*A (~1 nm) Hydrodynamic size is insignificant
**Count-rate too low for measurement

Table S4:

Reverse Transcription (RT) reaction mixture for a $15 \mu \mathrm{~L}$ reaction : $15 \mu \mathrm{~L}$ reaction consists of $7 \mu_{\mathrm{L}}$ master mix, $3 \mu \mathrm{~L}$ of 5 X primer and $5 \mu \mathrm{~L}$ miRNA 21 sample (with or w/o CaRGOS).

Component
100 mM dNTPs
MultiScribe Reverse Transcriptase, 50 U/
$\mu_{\mathbf{L}}$
10X Reverse Transcription Buffer
RNase Inhibitor $20 \mathbf{U} / \mu \mathbf{L}$
Nuclease-free water
5X miRNA
Total volume ($\mu \mathbf{L}$)

Volume ($\mu \mathbf{L}$) per 15- $\mu_{\mathbf{L}}$ reaction 0.151.00
1.50
0.19
4.16
3.00
10.00

Table S5
PCR reaction mixture for a $10 \mu \mathrm{~L}$ reaction: Each 10 μ_{L} reaction consists of $5 \mu_{\mathrm{L}}$ master mix, $0.5 \mu_{\mathrm{L}}$ of 20 X primer, $3.17 \mu \mathrm{~L}$ of nuclease-free water and $1.33 \mu \mathrm{~L}$ of $\mathbf{c D N A}$ (RT product).

Component	Volume $\left(\mu_{\mathbf{L}}\right)$ per 10- $\mu_{\mathbf{L}}$ reaction	
20X miRNA Primer		0.5
Universal Master Mix		5.00
Nuclease-free water	$\underline{3.17}$	
Total Volume	8.67	

[^0]: * Correspondence to: gautam.gupta@louisville.edu and robert.keynton@louisville.edu

