Supporting Information

A facile template-assisted electrodeposition approach to

porous Cu/Cu₂O nanowires

Jin Zhang^{1,2 ‡}, Jia Hao Ma^{2, ‡}, Jingyuan Bai^{3,*}, Dalong Yang¹, Meilin Zhang³, Zhou

Yang¹, Longyi Fan¹, Xiao Lin Chen^{1,2}, Ren Guo Guan^{1,*}
¹Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, P. R.China
²State Key laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
³School of Materials Science and Engineering, Northeastern University, Shenyang

³School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China;

‡ both authors contributed equally to the work.

Figure S1. The UV-Vis absorption spectra and the corresponding calibration curves of a) nitrate-N, b) ammonia-N, c) nitrite-N for NO_3^- electroreduction measurements by using ultrapure water as background solution.

Figure S2. The size distribution of micelles in electrolyte containing 37g/L P-123 measured by dynamic light scattering (DLS).

Figure S3. a) SEM and b) zoomed SEM images of as-obtained nanowires. The concentration of P-123 used is 8g/L.

Figure S4. Current density changes during Cu/Cu₂O PNs eletrodeposition process.

Figure S5. a) SEM, b) zoomed SEM, c) EDX d) XRD images of the Cu nanowires.

Figure S6. a) SEM, b) zoomed SEM, c) EDX d) XRD images of the Cu/Cu₂O nanowires. Peaks denoted Δ by \Box belong to Cu and Cu₂O phases, respectively.

Figure S7. SEM image of the Cu/Cu₂O PNs after the electroreduction test.

Figure S8. X-ray diffraction pattern of Cu/Cu₂O PNs after the electroreduction test.

redetion				
Electrocatalys	Electrolyte	NH ₃ yield	Ammonia	Ref
t			selectivity	
Cu/Cu ₂ O	50 ppm NO ₃ -+	$2.73 \hspace{0.1in} mmol \hspace{0.1in} h^{-1}$	37%	This work
porous	0.1 M K ₂ SO ₄	g^{-1}		
nanowires				
CuO nanowire	200 ppm NO ₃ -	$0.2449 \text{ mmol } h^{-1}$	81.2%	1
arrays	-N + 0.5 M	cm^{-2}		
	Na_2SO_4			
C0 ₂ O ₃	100 g L ⁻¹ 0.1	$0.854 \hspace{0.1in} mmol \hspace{0.1in} h^{-1}$	33.6%	2
nanorod	M NO ₃ -+	cm^{-2}		
arrays	K_2SO_4			
Fe single atom	0.5 M NO ₃ -+	$0.46 \text{ mmol } h^{-1}$	75%	3
catalyst	$0.1 \text{ M K}_2\text{SO}_4$	cm^{-2}		
Cu-molecular	50 ppm NO ₃ -	$436\pm 85 \; \mu g \; h^{-1}$	N.A.	4
solid catalyst	+0.1 M PBS	cm^{-2}	FE=85.9%	
Co ₃ O ₄ @NiO	200 ppm NO ₃ -	$6.93 \text{ mmol } h^{-1}g^{-1}$	62.29%	5
	-N + 0.5 M			
	Na_2SO_4			
Ir nanotube	0.1 M NO ₃ -	921 $\mu g h^{-1}$	N.A.	6
		${ m mg_{cat}}^{-1}$	FE=84.7%	
Ni ₂ P	80mg L ⁻¹ NO ₃ -	$0.056 \text{ mmol } h^{-1}$	89.1%	7

Table S1. Comparison of NH_3 yield and ammonia selectivity by eletrocatalytic nitrate redction

	-N + 0.5 M	mg^{-1}		
	Na_2SO_4			
Ru/oxygen-	mixed	5.56 mol g_{cat}^{-1}	~100%	8
doped-Ru	KOH/KNO ₃	h^{-1}		
core/shell	solution			
nanoclusters t				
Cu nanosheet	10 mM NO ₃ -	$390.1 \mu g m g^{-1} Cu$	N. A.	9
	+0.1 M KOH	h^{-1}	FE=99.7%	

- Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350.
- 1. Wang, W. Ehou, R. Fu, F. Fu, B. Ehang, *Magew. Chem. Int. Dat.* 2020, *67*, 5350.
 Y. Wang, Y. Yu, R. Jia, C. Zhang and B. Zhang, *Natl. Sci. Rev.* 2019, *6*, 730.
 Z. Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F. Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami, H. Wang, *Nat. Common.* 2021, *12*, 2870.
 G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, *Nat. Energy*, 2020, *5*, 605.
 Y. Wang, C. Liu, B. Zhang, Y. Yu, *Sci. China Mater.* 2020, *63*, 2530.
 J. Y. Zhu, Q. Xue, Y. Y. Xue, Y. Ding, F. M. Li, P. Jin, P. Chen, Y. Chen, *ACS Appl. Mater. Interfaces* 2020, *12*, 14064.
 Q. Yao, J. Chen, S. Xiao, Y. Zhang, X. Zhou, *ACS Appl. Mater. Interfaces* 2021, *13*, 30458.
 J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S. X. Dou, L. Zhang, J. C. Yu, *J. Am. Chem. Soc.* 2020, *142*, 7036.
 X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M.R. Wasielewski, Y. Kang, *Appl. Mater. Today*, 2020, *19*, 100620