Direct oxidation of N-ynylsulfonamides into N-sulfonyloxoacetamides

with DMSO as a nucleophilic oxidant

Jun Dong,^{a,b} Duo Fu,^a Dongning Sheng,^a Jiayi Wang,^a and Jiaxi Xu^a*

^aState Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China E-mail:

jxxu@mail.buct.edu.cn

^bSchool of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, People's Republic of China

Electronic Supporting Information

Contents

Details of calculation	S2
Coordinates of all stationary points	S3
Computed energies	
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of compounds 1	S15
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of compounds 2	
Copies of ¹ H and ¹³ C NMR spectra of compounds 3 and 4	
Copies of HRMS spectra of unknown compounds 2	
Copies of HRMS spectra of compounds 3 and 4	

Details of calculation

All of the DFT calculations were performed with the Gaussian 09 program package.¹ The geometry optimization of all the minima and transition states involved were performed at the B3LYP levels of theory² with the 6-31+G(d,p) basis set for all atoms. The solution condition is given by IEFPCM model.³⁻⁵ The vibrational frequencies were computed at the same level of theory to check whether every optimized geometrical structure is an energy minimum or a transition state and to get the correction of Gibbs free energy. IRC calculations⁶⁻⁷ were used to confirm that the transition states found from the optimization calculations connect the related reactants and products. The high accurate zero-point energy is given under the level M06-2X/def2-TZVPP.⁸ Solvent effects were computed by the uESE software⁹⁻¹² at the B3LYP/def2-TZVP level using the optimized structures. CM5 charges is given by Multiwfn program.¹³⁻¹⁵

References

J. Phys. Chem. A, 2010, **114**, 13442–13444. Gaussian 09, Revision B.01: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford, CT, 2009.

- 2 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 247–257.
- 3 S. Miertŭs, E. Scrocco and J. Tomasi. Chem. Phys., 1981, 55, 117–29.
- 4 S. Miertŭs and J. Tomasi. Chem. Phys., 1982, 65, 239-45.
- 5 J. L. Pascual-Ahuir, E. Silla and I. Tunón. J. Comp. Chem., 1994, 15, 1127–38.
- 6 K. Fukui, J. Phys. Chem., 1970, 74, 4161–4163.
- 7 K. Ishida, K. Morokuma and A. Komornicki, J. Chem. Phys., 1977, 66, 2153–2156.
- 8 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 9 S. F. Vyboishchikov, uESE program, Girona, 2021.
- 10 S. F. Vyboishchikov and A. A. Voityuk, J. Comput. Chem., 2021, 42, 1184–1194.
- 11 A. A. Voityuk and S. F. Vyboishchikov, *Phys. Chem. Chem. Phys.*, 2020, 22, 14591–14598.
- 12 A. A. Voityuk and S. F. Vyboishchikov, Phys. Chem. Chem. Phys., 2019, 21, 875–874.
- 13 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592.
- 14 T. Lu and F. Chen, Acta Phys. -Chim. Sin., 2012, 28, 1–18.

¹⁵ A. V. Marenich, S. V. Jerome, C. J. Cramer and D. G. Truhlar, *J. Chem. Theory Comput.*, 2012, **8**, 527–541.

Coordinates of All Stationary Points

Standard orientation:

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	6	0	4. 436230	0. 953298	0. 443436
2	6	0	3.062203	1.170318	0.339246
3	6	0	2.208256	0.134222	-0.094709
4	6	0	2.766666	-1.122045	-0.413029
5	6	0	4.140413	-1.332446	-0.292621
6	6	0	4.981117	-0.297384	0.131775
7	1	0	5.081905	1.761560	0.774055
8	1	0	2.640959	2.138904	0. 589368
9	1	0	2.117855	-1.923935	-0. 750751
10	1	0	4.555861	-2.305762	-0. 536692
11	1	0	6.050531	-0.463880	0.218759
12	6	0	0.801125	0.353730	-0.212345
13	6	0	-0.396983	0.532502	-0.323731
14	7	0	-1.719214	0.761449	-0. 476555
15	16	0	-2.792884	-0. 499863	0.000186
16	8	0	-4.123254	-0.086371	-0.467034
17	8	0	-2.197054	-1.750530	-0. 485565
18	6	0	-2.201690	2.163212	-0.442697
19	1	0	-1.647762	2.719331	-1.200352
20	1	0	-3.260603	2.172056	-0.695834
21	1	0	-2.041510	2.617795	0.539871
22	6	0	-2.776605	-0.516644	1.800273
23	1	0	-3. 437433	-1.328037	2.110435
24	1	0	-1.754148	-0.701339	2.131030
25	1	0	-3. 146958	0. 443610	2. 160200

(Angstroms	Coordinates Y	Х	Atomic Type	Atomic Number	Center Number
1. 11720	-1.019101	4. 213403	0	6	1
1.21743	-0.398572	2.967888	0	6	2
0.14036	-0.425069	2.057433	0	6	3
-1.04283	-1.083524	2.447360	0	6	4
-1.13733	-1.716685	3.690252	0	6	5
-0.05889	-1.686355	4.579062	0	6	6
1.96066	-0.990516	4.897740	0	1	7
2.13544	0.108185	2.687811	0	1	8
-1.89264	-1.090715	1.771179	0	1	9
-2.05808	-2.222742	3.966795	0	1	10
-0.13333	-2.172951	5.547224	0	1	11
0.23587	0.162716	0.719019	0	6	12
0.07386	-0.031978	-0.550448	0	6	13
-0.24101	-1.185621	-1.239994	0	7	14
-0.10321	-1.037889	-2.935365	0	16	15
-0.80230	0.192871	-3.350308	0	8	16
-0.54110	-2.320535	-3.528022	0	8	17
-0.07651	-2.538310	-0.665687	0	6	18
-0.76180	-2.634350	0.178406	0	1	19
0.94993	-2.684493	-0.309272	0	1	20
-0.32317	-3.295347	-1.408728	0	1	21
0. 70197	1.777899	1.131414	0	8	22
0.07155	3.070752	0.456558	0	16	23
0.54973	3.133415	-1.303616	0	6	24
0.18344	4.095692	-1.671654	0	1	25
0.13450	2.289637	-1.849841	0	1	26
1.64040	3. 121572	-1.328806	0	1	27
-1.71771	2.779860	0.309821	0	6	28
-1.90454	1.871685	-0.260150	0	1	29
-2.13539	3.658826	-0.186334	0	1	30
-2.11034	2.702852	1.324404	0	1	31

32	6	0	-3.290481	-0.818566	1.651352
33	1	0	-4.369726	-0.687883	1.745586
34	1	0	-2.960172	-1.711782	2.183356
35	1	0	-2.756697	0.067006	1.995910

Standard orientation:

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	6	0	4. 296978	-0. 514497	0. 835900
2	6	0	3.069810	0.146663	0.767629
3	6	0	2.064040	-0.279371	-0.123846
4	6	0	2.346688	-1.373828	-0.964060
5	6	0	3.572612	-2.041728	-0.890823
6	6	0	4. 553408	-1.616136	0.009996
7	1	0	5.053693	-0.173415	1.537211
8	1	0	2.880325	0.998711	1.413407
9	1	0	1.599486	-1.694808	-1.684009
10	1	0	3.764422	-2.886220	-1.547062
11	1	0	5.508221	-2.131025	0.064432
12	6	0	0.746796	0.390747	-0.200655
13	6	0	-0.542857	0.077726	-0.241107
14	7	0	-1.017530	-1.224103	-0.020866
15	16	0	-2.714033	-1.342159	-0.101721
16	8	0	-3.169997	-0.708240	-1.353946
17	8	0	-3.069535	-2.763937	0.113685
18	6	0	-0.337089	-2.212756	0.844818
19	1	0	0. 527824	-2.620428	0.320164
20	1	0	0.004214	-1.728433	1.767356
21	1	0	-1.014419	-3.030694	1.085091
22	8	0	1.126905	1.861412	-0.453702
23	16	0	0.185236	3.132122	-0.154919
24	6	0	-0. 552248	2.903857	1.489730
25	1	0	-1.146178	3.802117	1.675453

26	1	0	-1.154847	2.000498	1.514037
27	1	0	0.275973	2.853680	2.197857
28	6	0	-1.263936	3.057006	-1.251708
29	1	0	-1.846381	2.163811	-1.039921
30	1	0	-1.811525	3.988069	-1.080035
31	1	0	-0.873171	3.043047	-2.270646
32	6	0	-3.400171	-0.390659	1.271000
33	1	0	-4.485134	-0.493550	1.215549
34	1	0	-3.019528	-0.807573	2.204408
35	1	0	-3.102677	0.649495	1.149464

—S⁺ 0 Ms-N: TS2s

Center	Atomic	Atomic	V	Coordinates v	(Angstroms)
	Nuiiber	туре	Λ	1	
1	6	0	4. 053976	-1.039213	0.697247
2	6	0	2.964401	-0.185924	0.513638
3	6	0	1.848709	-0.577735	-0.252447
4	6	0	1.891076	-1.847260	-0.862039
5	6	0	2.979536	-2.704658	-0.678621
6	6	0	4.066428	-2.308080	0.106199
7	1	0	4.894782	-0.712582	1.303282
8	1	0	2.984295	0.794216	0.979371
9	1	0	1.067458	-2.156529	-1.498736
10	1	0	2.982830	-3.677574	-1.162643
11	1	0	4.914882	-2.971326	0.246854
12	6	0	0.682869	0.321100	-0. 494891
13	6	0	-0.677718	0.164114	-0.456531
14	7	0	-1.268383	-0.979429	0.047531
15	16	0	-2.980105	-0.958852	-0.067850
16	8	0	-3.368723	-0.627268	-1.451287
17	8	0	-3. 473434	-2.236829	0.492553
18	6	0	-0.687700	-1.975987	0.979712
19	1	0	-0.210023	-2.793855	0.435979

20	1	0	0.058533	-1.472455	1.597490
21	1	0	-1.467420	-2.390462	1.617052
22	8	0	1.142699	1.550459	-1.040421
23	16	0	1.030123	3.070801	-0.148292
24	6	0	0.724375	2.594839	1.561269
25	1	0	0.041906	3.318606	2.008571
26	1	0	0.261282	1.598738	1.536174
27	1	0	1.676256	2.582404	2.090240
28	6	0	-0.621847	3. 595373	-0.668475
29	1	0	-1.304655	2.760443	-0.495807
30	1	0	-0.888340	4. 488738	-0.099405
31	1	0	-0.554433	3.831706	-1.731155
32	6	0	-3. 533619	0.380277	1.003756
33	1	0	-4.618773	0.435523	0.903762
34	1	0	-3.248393	0.136919	2.027865
35	1	0	-3.059061	1.300339	0.666993

Standard orientation:

Center	Atomic	Atomic		Coordinates	(Angstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	4. 494150	-0. 219993	0. 126351
2	6	0	3.335408	-0.956737	-0.113750
3	6	0	2.097278	-0.304158	-0.235046
4	6	0	2.034860	1.094367	-0.114070
5	6	0	3. 196341	1.829518	0. 127221
6	6	0	4. 426317	1.173643	0.246999
7	1	0	5. 448988	-0.728219	0.220257
8	1	0	3.372157	-2.037115	-0.205580
9	1	0	1.085920	1.611422	-0.222388
10	1	0	3.143580	2.910170	0.215494
11	1	0	5. 330129	1.746665	0.431506
12	6	0	0.872489	-1.121807	-0. 455899
13	6	0	-0.415236	-0.455480	-0.586420
14	7	0	-1.279894	-0.414257	0.359226
15	16	0	-2.929350	0.264607	-0.088425

16	8	0	-3.480108	-0.612578	-1.128491
17	8	0	-3.648029	0.437529	1.181727
18	6	0	-1.195908	-0.903155	1.762521
19	1	0	-0.213469	-1.353791	1.893050
20	1	0	-1.326647	-0.066778	2.449096
21	1	0	-1.972301	-1.648632	1.939476
22	6	0	-2.504506	1.858962	-0.797606
23	1	0	-1.834421	1.692178	-1.639612
24	1	0	-3. 451952	2.292047	-1.124012
25	1	0	-2.040766	2.466649	-0.020916
26	8	0	0.908198	-2.348635	-0.652980

Center	Atomic	Atomic	V	Coordinates	(Angstroms)
Number	Number	Туре	Λ	Ŷ	L
1	6	0	4. 453793	-1.739586	0. 310809
2	6	0	3.070701	-1.874672	0.439686
3	6	0	2.204891	-0.920638	-0.121589
4	6	0	2.751532	0.163936	-0.829169
5	6	0	4. 136175	0.293010	-0.962786
6	6	0	4.991111	-0.655021	-0.391375
7	1	0	5.111713	-2.479547	0.757319
8	1	0	2.645781	-2.714825	0.978503
9	1	0	2.098199	0.893804	-1.294969
10	1	0	4. 545948	1.129668	-1.521015
11	1	0	6.067193	-0.552422	-0. 496752
12	6	0	0.719641	-1.124540	0.081476
13	6	0	-0.062715	0.055634	-0.100600
14	7	0	-0.054241	1.135991	0.627077
15	16	0	-0.671377	2.640790	-0.129253
16	8	0	-0.040986	3.759020	0. 595861
17	8	0	-0. 465455	2.506036	-1.576553
18	6	0	0. 181812	1.222910	2.091888
19	1	0	0.836174	0.395213	2.365089

20	1	0	0.662786	2.169198	2.334956
21	1	0	-0.763549	1.133408	2.633714
22	6	0	-2.431834	2.600984	0.229391
23	1	0	-2.564972	2.695484	1.307421
24	1	0	-2.873850	3.451368	-0.292991
25	1	0	-2.816484	1.648332	-0.134820
26	8	0	0.277670	-2.276191	0.281622
27	16	0	-2.483195	-1.880869	-0. 521979
28	8	0	-2.033815	-0.633015	0.301965
29	6	0	-4.212944	-1.512395	-0.959109
30	1	0	-4.194585	-0.681901	-1.666558
31	1	0	-4.649009	-2.394614	-1.434363
32	1	0	-4.767123	-1.238610	-0.058750
33	6	0	-2.784877	-3.192416	0.702606
34	1	0	-3.228888	-4.050320	0.191620
35	1	0	-1.809092	-3.452847	1.110643
36	1	0	-3.450427	-2.812092	1.480583

Center	Atomic	Atomic		Coordinates	(Angstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	4. 324402	-1. 579619	0. 405139
2	6	0	2.949951	-1.796245	0. 523281
3	6	0	2.027818	-0.914317	-0.067149
4	6	0	2.517706	0.174937	-0.805480
5	6	0	3.894520	0.385330	-0.934720
6	6	0	4.802912	-0.485837	-0.325614
7	1	0	5.021553	-2.265087	0.879263
8	1	0	2.579348	-2.652923	1.077804
9	1	0	1.821555	0.846097	-1.295948
10	1	0	4.256177	1.228078	-1.517577
11	1	0	5.871785	-0.319144	-0.424575
12	6	0	0.563212	-1.225318	0.070974
13	6	0	-0.347298	-0.245160	0.411686

14	7	0	-0.132716	1.060595	0.816275
15	16	0	-0.528412	2.362821	-0.230421
16	8	0	0.362318	3.494151	0.106069
17	8	0	-0.512547	1.831683	-1.605341
18	6	0	-0.127108	1.393383	2.260224
19	1	0	0.564486	0.707492	2.752491
20	1	0	0.233898	2.413314	2.402069
21	1	0	-1.120487	1.288988	2.710836
22	6	0	-2.212122	2.877625	0.165072
23	1	0	-2.242501	3.214667	1.201654
24	1	0	-2.456353	3.699513	-0. 510258
25	1	0	-2.880001	2.031680	0.008743
26	8	0	0.175668	-2.440134	-0.124818
27	16	0	-2.340573	-1.679827	-0.569278
28	8	0	-1.723311	-0.694125	0.613147
29	6	0	-3.998357	-0.948553	-0.664523
30	1	0	-3.909700	-0.008031	-1.208310
31	1	0	-4.629570	-1.639796	-1.228196
32	1	0	-4. 393738	-0.791419	0.340460
33	6	0	-2.720258	-3.180552	0.363300
34	1	0	-3.310436	-3.825149	-0.292478
35	1	0	-1.759608	-3.632735	0.600519
36	1	0	-3.282941	-2.914272	1.259163

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	6	0	4. 328189	-1. 532395	0. 487240
2	6	0	2.955033	-1.752718	0.613975
3	6	0	2.029156	-0.923673	-0.043167
4	6	0	2.512177	0.115504	-0.852641
5	6	0	3.888060	0.328741	-0. 990609
6	6	0	4.800477	-0.488892	-0.317511

7	1	0	5.028820	-2.175260	1.012963
8	1	0	2.591590	-2.570786	1.229198
9	1	0	1.813203	0.746456	-1.390183
10	1	0	4.245107	1.133026	-1.628020
11	1	0	5.868287	-0.319036	-0.422012
12	6	0	0.565398	-1.250218	0.092216
13	6	0	-0.351820	-0.319314	0.575525
14	7	0	-0.123858	1.025766	0.873640
15	16	0	-0.463433	2.246825	-0.276302
16	8	0	0.538431	3.324069	-0.122707
17	8	0	-0.582941	1.573551	-1.583845
18	6	0	-0.138631	1.468516	2.284623
19	1	0	0.553652	0.833166	2.840017
20	1	0	0. 212455	2.500343	2.352618
21	1	0	-1.136331	1.390729	2.731271
22	6	0	-2.061770	2.969456	0.151417
23	1	0	-1. 984935	3. 435196	1.133964
24	1	0	-2.275055	3.721948	-0.609909
25	1	0	-2. 819250	2.187279	0.148188
26	8	0	0.181659	-2.431416	-0.219844
27	16	0	-2.470789	-1.509860	-0.600631
28	8	0	-1.664410	-0.787077	0.767573
29	6	0	-4.083686	-0.707980	-0. 409535
30	1	0	-4.009141	0.291326	-0.837834
31	1	0	-4.818075	-1.293204	-0.968300
32	1	0	-4.345541	-0.666606	0.649405
33	6	0	-2.820027	-3.129718	0.114127
34	1	0	-3.459059	-3.671258	-0.587094
35	1	0	-1.850741	-3.614058	0.221525
36	1	0	-3.317677	-2.997932	1.076260

_						
	Center	Atomic	Atomic		Coordinates	(Angstroms)
	Number	Number	Туре	Х	Y	Z

1	6	0	-3.390299	-1.785257	0.231928
2	6	0	-2.191602	-1.103128	0.023786
3	6	0	-2.196283	0.294776	-0.133719
4	6	0	-3. 413592	1.000216	-0.080073
5	6	0	-4.607045	0.314275	0.122936
6	6	0	-4.596254	-1.078776	0.279459
7	1	0	-3.384071	-2.863527	0.353913
8	1	0	-1.260621	-1.659054	-0.018442
9	1	0	-3.405299	2.078390	-0.199260
10	1	0	-5.545493	0.858322	0.160705
11	1	0	-5.528787	-1.611696	0.438849
12	6	0	-0.942681	1.050566	-0.324649
13	6	0	0.365923	0.264136	-0.556729
14	7	0	1.316806	0.313501	0.430523
15	16	0	2.872832	-0.445296	0.140805
16	8	0	3.671105	-0.117682	1.329484
17	8	0	2.647880	-1.853531	-0.199916
18	6	0	1.116191	1.041308	1.703215
19	1	0	0.082095	0.914046	2.024210
20	1	0	1.765281	0.608088	2.460440
21	1	0	1.344107	2.102366	1.583832
22	8	0	0.518052	-0.283226	-1.645584
23	8	0	-0.873283	2.271816	-0.409496
24	6	0	3. 530850	0.435318	-1.277555
25	1	0	4.508412	-0.009683	-1.473713
26	1	0	2.853204	0.286177	-2.116666
27	1	0	3.626926	1.487177	-1.007898

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	16	0	0. 264667	0. 420016	-0. 000000
2	6	0	0.264667	-0.781162	1.375441
3	6	0	0.264667	-0.781162	-1.375441
4	1	0	0.199131	-0.205396	-2.300170

5	1	0	1.199669	-1.346326	-1.355315
6	1	0	-0.598156	-1.444154	-1.275795
7	8	0	-1.126495	1.080680	-0.000000
8	1	0	-0.598156	-1.444154	1.275795
9	1	0	1.199669	-1.346326	1.355315
10	1	0	0.199131	-0.205396	2.300170

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	16	0	0. 000000	0. 660380	0. 000000
2	6	0	-1.401265	-0.513306	0.000000
3	1	0	-2.318575	0.079759	-0.000035
4	1	0	-1.382301	-1.141504	-0.894489
5	1	0	-1.382342	-1.141458	0.894523
6	6	0	1.401265	-0.513306	0.000000
7	1	0	1.382334	-1.141466	-0.894516
8	1	0	2.318575	0.079759	0.000023
9	1	0	1. 382308	-1.141496	0. 894495

Computed Energies

Table S1. Electronic energies (E_{gas} in Hartree), thermal correction to Gibbs free energy ($\Delta G_{correction}$ in Hartree), Gibbs free energy in gas phase (G_{gas} in Hartree, $G_{gas} = E_{gas} + \Delta G_{correction}$), solvation free energy (G_{uESE} in kcal/mol), Gibbs free energy about molecule converts from the gas-phase standard state to the solution-phase standard state of 1 M (RTln(RT/p) in kcal/mol, which is 1.89 kcal/mol), free energies in solution (ΔG_{solv} in Hartree, $\Delta G_{solv} = G_{gas} + G_{uESE} + RTln(RT/p)$), relative energies (ΔG) at 298 K are reported in kcal/mol.

Structure	$\mathbf{E}_{\mathbf{gas}}$	$\Delta G_{correction}$	Ggas	Guese	RTln(RT/p)	ΔG_{solv}	ΔG
DMSO	-553.1889943	0.050841	-553.1381533	-7.155	1.89	-553.1465436	0.0
DMS	-477.9910865	0.048669	-477.9424175	-1.076	1.89	-477.9411204	0.0
1s	-990.9633956	0.148345	-990.8150506	-15.05	1.89	-990.8360224	0.0
2s	-1141.488823	0.157523	-1141.3313	-17.948	1.89	-1141.356891	-69.0
INT1s	-1544.101011	0.2229	-1543.878111	-31.325	1.89	-1543.925019	36.1
INT2s	-1066.176314	0.151818	-1066.024496	-18.075	1.89	-1066.050288	-5.5
INT3s	-1619.390395	0.226765	-1619.16363	-32.269	1.89	-1619.212042	-15.1
TS1s	-1544.104411	0.219693	-1543.884718	-26.136	1.89	-1543.923356	37.2
TS2s	-1544.086074	0.221604	-1543.86447	-30.75	1.89	-1543.910462	45.2
TS3s	-1619.375775	0.224113	-1619.151662	-25.373	1.89	-1619.189085	-0.7
TS4s	-1619.385144	0.226873	-1619.158271	-31.04	1.89	-1619.204724	-10.5

Copies of ¹H, ¹³C and ¹⁹F NMR spectra of compounds 1 *N*,4-Dimethyl-*N*-(phenylethynyl)benzenesulfonamide (**1a**)

(phenylethynyl)benzenesulfonamide (1b)

Figure S6. ¹³C NMR spectrum (101 MHz, CD₃COCD₃) of 4-bromo-*N*-methyl-*N*-(phenylethynyl)benzenesulfonamide (1c)

N-Methyl-4-nitro-*N*-(phenylethynyl)benzenesulfonamide (1d)

110 100 fl (ppm) ò

Figure S8. ¹³C NMR spectrum (101 MHz, CD₃COCD₃) of *N*-methyl-4-nitro-*N*-(phenylethynyl)benzenesulfonamide (1d)

N,4-Dimethyl-*N*-(4-methylphenylethynyl)benzenesulfonamide (1e)

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*,4-dimethyl-*N*-(4-methylphenylethynyl)benzenesulfonamide (**1e**)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Figure S10. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*,4-dimethyl-*N*-(4-methylphenylethynyl)benzenesulfonamide (**1e**)

N-((4-Fluorophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (1f)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Figure S12. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-((4-fluorophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (**1f**)

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145

Figure S13. ¹⁹F NMR spectrum (377 MHz, CDCl₃) of *N*-((4-fluorophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (**1f**)

Figure S14. ¹H NMR spectrum (400 MHz, CD₃COCD₃) of *N*-((4-chlorophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (**1g**)

Figure S15. ¹³C NMR spectrum (101 MHz, CD₃COCD₃) of *N*-((4-chlorophenyl)ethynyl)-*N*,4dimethylbenzenesulfonamide (**1g**)

N-((4-Bromophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (1h)

Figure S16. ¹H NMR spectrum (400 MHz, CD₃COCD₃) of *N*-((4-bromophenyl)ethynyl)-*N*,4dimethylbenzenesulfonamide (**1h**)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (

Figure S17. ¹³C NMR spectrum (101 MHz, CD₃COCD₃) of *N*-((4-bromophenyl)ethynyl)-*N*,4dimethylbenzenesulfonamide (**1h**)

Figure S18. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*,4-dimethyl-*N*-(thiophen-3-ylethynyl)benzenesulfonamide (1i)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (

Figure S19. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*,4-dimethyl-*N*-(thiophen-3-ylethynyl)benzenesulfonamide (**1i**)

Figure S20. ¹H NMR spectrum (400 MHz, CD₃COCD₃) of *N*-ethyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1j**)

Figure S21. ¹³C NMR spectrum (101 MHz, CD₃COCD₃) of *N*-ethyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1j**)

N-Butyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (1k)

Figure S23. ¹³C NMR spectrum (101 MHz, CD₃COCD₃) of *N*-butyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1**k)

Figure S24 ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-cyclohexyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (11)

Figure S25. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-cyclohexyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1**)

N-Cyclopropyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1m**)

(phenylethynyl)benzenesulfonamide (1m)

Figure S28. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-benzyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1n**)

Figure S29. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-benzyl-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1n**)

(phenylethynyl)benzenesulfonamide (10)

4-Methyl-*N*-phenyl-*N*-(phenylethynyl)benzenesulfonamide (10)

(phenylethynyl)benzenesulfonamide (1p)

Figure S33. ¹³C NMR spectrum (101 MHz, CDCl₃) of N-(4-methoxyphenyl)-4-methyl-N-(phenylethynyl)benzenesulfonamide (**1p**)

N-Allyl-4-methyl-N-(phenylethynyl)benzenesulfonamide (1q)

110 100 f1 (ppm) $\frac{1}{70}$

Figure S35. ¹³C NMR spectrum (101 MHz, CDCl₃) of N-allyl-4-methyl-N-(phenylethynyl)benzenesulfonamide (1q)

Figure S36. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-(furan-2-ylmethyl)-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1r**)

Figure S37. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-(furan-2-ylmethyl)-4-methyl-*N*-(phenylethynyl)benzenesulfonamide (**1r**)

Figure S38. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-methyl-*N*-(phenylethynyl)methanesulfonamide (1s)

Figure S39. ¹³C NMR spectrum (101 MHz, CDCl₃ of *N*-methyl-*N*-(phenylethynyl)methanesulfonamide (1s)

Copies of ¹H, ¹³C, and ¹⁹F NMR spectra of compounds **2**.

Figure S41. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-methyl-2-oxo-2-phenyl-*N*-tosylacetamide (2a)

Figure S42. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-methyl-2-oxo-2-phenyl-*N*-(phenylsulfonyl)acetamide (**2b**)

Figure S43. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-methyl-2-oxo-2-phenyl-*N*-(phenylsulfonyl)acetamide (**2b**)

Figure S44. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-((4-bromophenyl)sulfonyl)-*N*-methyl-2-oxo-2-phenylacetamide (**2c**)

Figure S45. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-((4-bromophenyl)sulfonyl)-*N*-methyl-2-oxo-2-phenylacetamide (**2c**)

Figure S46. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-methyl-*N*-((4-nitrophenyl)sulfonyl)-2-oxo-2-phenylacetamide (**2d**)

Figure S47. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-methyl-*N*-((4-nitrophenyl)sulfonyl)-2-oxo-2-phenylacetamide (**2d**)

Figure S48. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-methyl-2-oxo-2-(*p*-tolyl)-*N*-(*p*-tosyl)acetamide (2e)

Figure S49. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-methyl-2-oxo-2-(*p*-tolyl)-*N*-(*p*-tosyl)acetamide (2e)

Figure S51. ¹³C NMR spectrum (101 MHz, CDCl₃) of 2-(4-fluorophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2f**)

¹⁹F NMR (377 MHz, CDCl₃)

F C O O

Figure S52. ¹⁹F NMR spectrum (377 MHz, CDCl₃) of 2-(4-fluorophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2f**)

Figure S53. ¹H NMR spectrum (400 MHz, CDCl₃) of 2-(4-chlorophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2g**)

Figure S54. ¹³C NMR spectrum (101 MHz, CDCl₃) of 2-(4-chlorophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2g**)

Figure S55. ¹H NMR spectrum (400 MHz, CDCl₃) of 2-(4-bromophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2h**)

Figure S56. ¹³C NMR spectrum (101 MHz, CDCl₃) of 2-(4-bromophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2h**)

Figure S57. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-methyl-2-oxo-2-(thiophen-3-yl)-*N*-tosylacetamide (**2i**)

Figure S58. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-methyl-2-oxo-2-(thiophen-3-yl)-*N*-tosylacetamide (**2i**)

Figure S60. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-ethyl-2-oxo-2-phenyl-*N*-tosylacetamide (2j)

110 100 f1 (ppm)

Figure S62. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-butyl-2-oxo-2-phenyl-*N*-tosylacetamide (2k)

N-Cyclohexyl-2-oxo-2-phenyl-N-tosylacetamide (21)

Figure S63. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-cyclohexyl-2-oxo-2-phenyl-*N*-tosylacetamide (21)

Figure S64. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-cyclohexyl-2-oxo-2-phenyl-*N*-tosylacetamide (21)

Figure S66. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-cyclopropyl-2-oxo-2-phenyl-*N*-tosylacetamide (**2m**)

Figure S67. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-benzyl-2-oxo-2-phenyl-*N*-tosylacetamide (2n)

Figure S68. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-benzyl-2-oxo-2-phenyl-*N*-tosylacetamide (2n)

2-Oxo-*N*,2-diphenyl-*N*-tosylacetamide (**2o**)

Figure S70. ¹³C NMR spectrum (101 MHz, CDCl₃) of 2-oxo-N,2-diphenyl-N-tosylacetamide (20)

Figure S72. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-(4-methoxyphenyl)-2-oxo-2-phenyl-*N*-tosylacetamide (**2p**)

- 167.120 - 188.428 - 40.781 - 31.194 77.319 77.001 76.683 110 100 f1 (ppm) 150 140 130

Figure S74. ¹³C NMR spectrum (101 MHz, CDCl₃) of *N*-methyl-*N*-(methylsulfonyl)-2-oxo-2-phenylacetamide (**2s**)

Copies of NMR spectra of compounds 3 and 4

N-Cyclohexyl-2-phenyl-*N*-tosylacetamide (**3**)

Figure S75. ¹H NMR spectrum (400 MHz, CDCl₃) of *N*-cyclohexyl-2-phenyl-*N*-tosylacetamide (31)

Figure S76. ¹³C NMR spectrum (101 MHz, CDCl₃) of N-cyclohexyl-2-phenyl-N-tosylacetamide (31)

Figure S77. ¹H NMR spectrum (400 MHz, CDCl₃) of 2-hydroxy-*N*-methyl-2-phenyl-*N*-tosylacetamide (4a)

Figure S78, ¹³C NMR spectrum (101 MHz, CDCl₃) of 2-hydroxy-*N*-methyl-2-phenyl-*N*-tosylacetamide (4a)

Copies of HRMS spectra of unknown compounds 2

N-Methyl-2-oxo-2-phenyl-*N*-(phenylsulfonyl)acetamide (**2b**) HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C₁₅H₁₃NNaO₄S⁺ 326.0457, found 326.0451.

Figure S79. HRMS spectrum of N-methyl-2-oxo-2-phenyl-N-(phenylsulfonyl)acetamide (2b)

N-Methyl-*N*-((4-nitrophenyl)sulfonyl)-2-oxo-2-phenyla-cetamide (**2d**) HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₃N₂O₆S⁺ 349.0489, found 349.0480.

Figure S80. HRMS spectrum of N-methyl-N-((4-nitrophenyl)sulfonyl)-2-oxo-2-phenyla-cetamide (2d)

1_20201222174700 #5001 RT: 27.97 AV: 1 SB: 161 28.09-28.95 NL: 2.22E6 T: FTMS + c ESI Full ms [50.0000-750.0000]

Figure S81. HRMS spectrum of 2-(4-fluorophenyl)-N-methyl-2-oxo-N-tosylacetamide (2f)

2-(4-Chlorophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2g**) HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₄ClNNaO₄S⁺ 374.0224, found 374.0220.

Figure S82. HRMS spectrum of 2-(4-chlorophenyl)-N-methyl-2-oxo-N-tosylacetamide (2g)

2-(4-Bromophenyl)-*N*-methyl-2-oxo-*N*-tosylacetamide (**2h**) HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₄BrNNaO₄S⁺ 417.9719, found 417.9714.

Figure S83. HRMS spectrum of 2-(4-bromophenyl)-N-methyl-2-oxo-N-tosylacetamide (2h)

Figure S84. HRMS spectrum of N-ethyl-2-oxo-2-phenyl-N-tosylacetamide (2j)

N-Butyl-2-oxo-2-phenyl-*N*-tosylacetamide (**2k**) HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₉H₂₁NNaO₄S⁺ 382.1083, found 382.1077.

Figure S85. HRMS spectrum of N-butyl-2-oxo-2-phenyl-N-tosylacetamide (2k)

Figure S86. HRMS spectrum of N-cyclopropyl-2-oxo-2-phenyl-N-tosylacetamide (2m)

Copies of HRMS spectra of compounds 3 and 4

Figure S87. HRMS spectrum of N-cyclohexyl-2-phenyl-N-tosylacetamide (31)

2-Hydroxy-*N*-methyl-2-phenyl-*N*-tosylacetamide (**4a**) HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C₁₆H₁₇NaNO₄S⁺ 342.0770, found 342.0778.

Figure S88. HRMS spectrum of 2-hydroxy-N-methyl-2-phenyl-N-tosylacetamide (4a)