

Sup.Figure 1a Elemental composition for 5NF catalyst obtained using EDS

Sup.Figure 1b Elemental composition for 10NF catalyst obtained using EDS

Element	Net	Int.	Weight %	Atom %
	Counts	Cps/nA		
0	14123		26.67	56.30
Fe	10899		58.03	36.27
Fe	5439			
Ni	2732		15.3	7.43
Ni	3089			
Total			100.00	100.00

Sup.Figure 1c Elemental composition for 15NF catalyst obtained using EDS

Sup.Figure 1d Elemental mapping for 10NF catalyst obtained using FESEM

Sup.Figure 2 Adsorption-Desorption isotherm of catalysts (a) 5 NF, (b) 10 NF, (c)15 NF, (d) dV(r) vs pore diameter for 5 NF, (e) dV(r) vs pore diameter for 10 NF,(f) dV(r) vs pore diameter for 15 NF.

Sup.Figure 3 Pyridine adsorbed -FTIR spectra of prepared catalysts.

$$CO_{2} \text{ conversion } (\%) = \frac{\left[CO_{2(in)} - CO_{2[out]}\right]}{\left[CO_{2(in)}\right]} \times 100$$

$$Sup. Equation 1$$

$$CO \text{ selectivity } (\%) = \frac{\left[CO\right]}{\left[CO_{2(in)} - CO_{2[out]}\right]} \times 100$$

$$Sup. Equation 2$$

$$CH_{4} \text{ selectivity } (\%) = \frac{\left[CH_{4}\right]}{\left[CO_{2(in)} - CO_{2[out]}\right]} \times 100$$

$$Sup. Equation 3$$

$$CH_{3}OH \text{ selectivity of } (\%) = \frac{\left[CH_{3}OH\right]}{\left[CO_{2(in)} - CO_{2[out]}\right]} \times 100$$

$$Sup. Equation 4$$

$$Vield(CH_{3}OH(\%), CO(\%), CH_{4(\%)}) = \frac{\left[(S_{CH_{3}OH(\%)}, S_{CO(\%)}, S_{CH_{4}(\%)}) \times X_{CO_{2}}(\%)\right]}{100}$$

$$Sup. Equation 5$$

$$Specific input energy(SIE J/L) = \frac{Power injected into the reactor (W)}{Feed flow rate (\frac{L}{5})}$$

$$Sup. Equation 6$$

Where S_{CH_3OH} and X_{CO_2} are CH_3OH selectivity and CO_2 conversion, respectively.

Sup. Figure 4 a) Typical schematic of Lissajous Figure, b) Discharge characteristics of reactor Lissajous figure at 14 kV for different packing materials (feed flow rate 100 ml/min, CO₂:H₂=1:3, frequency 50 Hz.)

Sup.Figure 5 Discharge characteristics for various reactors: (a) impact of applied voltage on power injected into reactor ,(fee flow rate 100 ml/min, CO_2 :H₂=1:3, frequency 50 hz.)

Sup.Figure 6 Discharge characteristics for various reactors: variation in effective capacitance with applied voltage, (feed flow rate 100 ml/min, CO_2 :H₂=1:3, frequency 50 hz.)

Sup.Figure 7 Discharge characteristics for various reactors: peak charge transfer as a function of applied voltage (feed flow rate 100 ml/min, CO_2 :H₂=1:3, frequency 50 hz.)

Sup.Figure 8 Discharge characteristics for various reactors: charge transfer per half cycle (feed flow rate 100 ml/min, $CO_2:H_2=1:3$, frequency 50 hz.)