

Fig. SI 2(a). Optimized geometry of the conformers of methanethiol dimer at B3LYP/cc-pVDZ

Fig. SI 2(b). Optimized geometry of the conformers of methanethiol trimer at B3LYP/cc-pVDZ

Fig. SI 3. Counterpoise corrected thermodynamic parameter of methanethiol dimer at various levels of theory and different basis sets.

Fig. SI 4. Counterpoise corrected thermodynamic parameter of methanethiol trimer at various levels of theory and different basis sets.

Fig. SI 5. FMO isosurface of methanethiol's dimer.

Fig. SI 6. FMO iso-surface of methanethiol trimer

	Our c	alculation at B3	BLYP	Lago et al's	Experimental	
				calculation	Values	
	cc-pVDZ	cc-pVDZ cc-pVTZ cc-pVQZ		B3LYP/cc-pVDZ	[From Ref. 24, 25.]	
R _{s-c}	1.84	1.83	1.83	1.84	1.82	
R _{S-H}	1.36	1.34	1.34	1.36	1.33	
R _{C-H}	1.10	1.09	1.09	1.10	1.10	
R _{C-H}	1.10	1.09	1.09	1.10	1.10	
$\Theta_{H s-S-C}$	96.9	97.1	97.3	97.0	100.3	
$\Theta_{\text{H-C-H}}$	108.8	108.9	108.8	109.0	110.3	
$\Theta_{\text{H-C-H}}$	110.3	110.4	110.4	110.5	110.3	
μ	1.50	1.55	1.55	1.61	1.52	

Table: ST1. Optimized geometrical parameters of the methanethiol monomer (R is distance in Å, Θ is angle in degree (°) and μ is dipole moment in D)

Table: ST 2. Optimized geometrical parameters of dimers of methanethiol at B3LYP (R and r* are distances in Å, Θ is angle in degree (°) and μ is dipole moments in D))

	1A				1B		1C		1D			1E			
	cc- pVDZ	cc- pVTZ	cc- pVQZ												
R _{C-S1}	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84
R _{H-S1}	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
R _{C-S7}	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84
R _{H-S7}	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
θ _{C-S1S}	98.1	98.1	98.1	77.2	77.2	77.2	66.4	66.4	66.4	75.1	75.1	75.1	98.3	98.3	98.3
θ _{C-S7S}	75.8	75.8	75.8	78.3	78.3	78.3	66.3	66.3	66.4	77.3	77.3	77.3	75.9	75.9	75.9
Ф _{с-ss-c}	123.0	123.0	123.0	-116.9	-116.9	-116.9	180.0	180.0	180.0	-116.8	-116.8	-116.8	-123.7	-123.7	-123.7
r* _{ss}	4.06	4.06	4.06	3.98	3.98	3.98	4.41	4.41	4.41	3.98	3.98	3.98	4.06	4.06	4.06
r* _{HS1}	3.22	3.22	3.22	3.14	3.14	3.14	4.13	4.13	4.13	3.17	3.17	3.17	3.23	3.23	3.23
r* _{HS7}	2.80	2.80	2.80	3.17	3.17	3.17	4.13	4.13	4.13	3.14	3.14	3.14	4.36	4.36	4.36
θ _{X-HS1}	130.4	130.4	130.4	139.1	139.1	139.1	77.8	77.8	77.8	132.9	132.9	132.9	130.3	130.3	130.3
θ _{X-HS7}	152.5	152.5	152.5	133.1	133.1	133.1	77.8	77.8	77.8	139.0	139.0	139.0	100.7	100.7	100.7
μ	1.82	1.79	1.77	1.47	1.48	1.48	0.00	0.00	0.00	1.48	1.49	1.48	1.81	1.78	1.76

Geometrical Parameters	2A		2B		2C		2D		2E	
	CCSD	B3LYP								
R _{S-H}	1.35	1.36	1.35	1.36	1.35	1.36	1.35	1.36	1.35	1.36
	1.35	1.36	1.35	1.36	1.35	1.36	1.35	1.36	1.35	1.36
	1.35	1.36	1.35	1.36	1.35	1.36	1.35	1.36	1.35	1.36
r _{HS1}	2.89	2.77	2.85	2.73	2.85	2.73	3.03	3.01	3.00	2.77
	-	-	-	-	3.35	4.25	-	-	-	-
r _{HS7}	2.89	2.77	2.89	4.42	2.99	2.80	2.94	2.77	2.90	2.73
	-	-	3.82	2.73	3.24	4.30	-	-	-	-
r _{HS13}	2.89	2.77	2.99	2.77	-	2.73	2.82	2.74	2.85	4.43
	-	-	3.24	4.30	3.83	4.42	3.11	3.46	4.94	4.26
	-	-	-	-	2.90	-	-	-	3.35	2.73
θ _{X-HS1}	158.6	160.8	153.2	161.7	129.2	161.7	154.3	156.1	145.3	159.7
	-	-	-	-	153.3	111.1	-	-	-	-
θ _{X-HS7}	158.6	160.7	112.7	97.3	126.5	159.6	149.2	165.6	144.9	161.6
	-	-	144.9	161.5	145.5	110.2	-	-	-	-
θ _{X-HS13}	158.6	160.8	126.4	159.7	144.9	161.6	149.2	163.5	90.2	97.2
	-	-	145.4	110.2	112.6	97.2	149.2	139.5	153.2	161.7
	-	-	-	-	-	-	-	-	129.2	111.0
μ	3.43	3.75	1.40	1.25	1.40	1.25	1.80	2.20	1.40	1.25

Table: ST 3. Optimized geometrical parameters of the methanethiol trimer (R and r are distances in Å, Θ is angle in degree (°) and μ is dipole moments in D))

Geometrical	B3LYP/cc-pVDZ							
Parameters	Monomer	Dimer	Trimer					
		$R_{S1-C} = 1.83$	$R_{S1-C2} = 1.83$					
Raa	1 837	R _{S7-C} = 1.84	$R_{S7-C8} = 1.83$					
KS-C	1.057		$R_{S13-C14} = 1.83$					
		$R_{S1-H} = 1.36$	$R_{S1-H3} = 1.35$					
D	1 358	$R_{S7-H} = 1.36$	$R_{S7-H9} = 1.35$					
KS-H	1.556		$R_{S13-H15} = 1.35$					
		$R_{C3-H4} = 1.10$ $R_{C3-H5} = 1.10$ $R_{C3-H5} = 1.10$ $R_{C3-H6} = 1.10$	$R_{C2-H4} = 1.10$ $R_{C2-H5} = 1.10$ $R_{C2-H5} = 1.10$ $R_{C2-H6} = 1.10$					
R _{C-H}	1 099	$\begin{array}{c} R_{C9-H10} = 1.10 \\ R_{C9-H11} = 1.10 \\ R_{C9-H12} = 1.10 \end{array}$	$\begin{array}{c} R_{C8-H10} = 1.10 \\ R_{C8-H11} = 1.10 \\ R_{C8-H12} = 1.10 \end{array}$					
	1.077		$\begin{aligned} R_{\rm C14-H16} &= 1.10 \\ R_{\rm C14-H17} &= 1.10 \\ R_{\rm C14-H18} &= 1.10 \end{aligned}$					
$\Theta_{\rm H,C,H}$		$\begin{array}{c} \Theta_{4,3,5} = 35.6\\ \Theta_{4,3,6} = 108.8\\ \Theta_{6,3,5} = 109.8\\ \Theta_{12,9,11} = 108.7\\ \Theta_{10,9,11} = 108.8\end{array}$	$\begin{array}{c} \Theta_{2,4,5} = 35.6\\ \Theta_{4,2,6} = 108.8\\ \Theta_{2,6,5} = 110.0\\ \Theta_{10,8,11} = 108.7\\ \Theta_{10,8,12} = 108.9\end{array}$					
О _{Н-С-Н}	108.77	$\Theta_{12, 9, 10} = 110.6$	$\begin{array}{c} \Theta_{12, 8, 11} = 110.0\\ \Theta_{17, 14, 18} = 109.8\\ \Theta_{17, 14, 16} = 108.9\\ \Theta_{16, 14, 18} = 108.9\end{array}$					
		$\Theta_{\text{H2-S1-C3-H4}} = -177.6$	$\Theta_{\text{H3-S1-C2-H4}} = 179.2$					
	100	Θ _{H8-S7-C9-H11} =-177.6	$\Theta_{\rm H9-S7-C8-H10} = 177.6$					
⊖ _{H-S-C-H}	180		$\Theta_{\rm H15-S13-C14-H16} = -175.1$					
μ	1.50 D	1.71 D	1.40 D					

Table: ST 4 Selected optimized geometrical parameters of methanethiol monomer, its most stable dimer (1A&1E) and its trimer (2B, 2C and 2E) (R is distance in Å, Θ is angle in degree (°) and μ is dipole moments in D))

	B3LYP/	/cc-pVDZ	CCSD/	cc-pVDZ
	Δυ	I/I _o	Δυ	I/I _o
1A (7,8)	-53.92	4.66	-3.81	0.63
(1, 2)	-1.10	0.82	-3.23	0.57
1B (7,8)	-2.83	1.47	-1.55	1.38
(1,2)	2.02	0.43	1.12	0.40
1C (7,8)	-2.12	2.20	-2.03	2.19
(1, 2)	-2.06	0.00	-2.02	0.00
1D (7,8)	-3.05	1.47	-1.63	1.38
(1, 2)	2.08	0.43	1.00	0.40
1E (12, 11)	-53.81	4.66	-3.76	0.64
(6, 5)	-1.12	0.82	-3.23	0.56
2A (1, 3)	-79.07	0.05	-14.87	0.05
(7, 9)	-69.60	12.73	-10.54	1.34
(13, 15)	-68.96	12.71	-10.51	1.33
2B (1, 3)	-90.88	1.80	-13.88	0.55
(13, 15)	-80.98	15.59	-6.46	0.44
(7, 9)	-90.92	12.00	-4.89	0.35
2C (7, 9)	-90.92	1.82	-14.03	0.56
(1, 3)	-81.01	15.57	-6.54	0.45
(13, 15)	-72.65	11.99	-4.91	0.35
2D (7, 9)	-72.73	4.95	-12.79	1.00
(1,3)	-66.08	11.86	-5.59	0.51
(13, 15)	-0.73	0.91	-2.36	0.96
2E (1,3)	-90.79	1.80	-14.01	0.56
(13, 15)	-80.88	15.55	-6.46	0.45
(7,9)	-72.64	12.01	-4.81	0.34

Table: ST 5. Relative change in vibrational frequency (Δv) and intensity (I) of S-H bonds in dimer and trimer of methanethiol with respect to monomer (I₀) (Δv in cm⁻¹)

1. All frequencies are calculated by subtracting the frequency of dimer/trimer from the frequency of the monomer for the corresponding vibrational mode.

2. I is the computed IR intensity of the dimer/trimer and I_o is the computed IR intensity of the monomer.

	B3	LYP	CC	CSD
	Δυ	I/I _o	Δυ	I/I _o
1A (8, 7, 9, 11)	26.13	1.75	17.23	1.42
(2, 1, 3, 4)	121.71	1.90	79.36	1.92
1B (8, 7, 9, 11)	15.38	1.73	14.13	1.56
(2, 1, 3, 4)	19.79	1.06	17.43	1.21
1C (8, 7, 9, 11)	4.77	0.00	6.90	0.00
(2, 1, 3, 4)	13.87	1.70	13.10	1.80
1D (8, 7, 9, 11)	15.63	1.78	14.43	1.58
(2, 1, 3, 4)	20.21	1.02	17.48	1.19
1E (12, 11, 7, 10)	26.1	1.75	18.23	1.41
(6, 5, 1, 4)	121.59	1.90	79.25	1.93
2A (9, 7, 8, 12)	-135.99	0.10	-142.95	0.26
(3, 1, 2, 5)	-135.62	0.10	-142.83	0.26
(15, 13, 14, 17)	-121.87	0.00	-126.64	0.01
2B (3, 1, 2, 5)	-135.97	0.09	-148.65	0.19
(9, 7, 8, 12)	-134.83	0.10	-132.64	0.19
(15, 13, 14, 17)	-122.49	0.00	-108.78	0.21
2C (9, 7, 8, 11)	-136.01	0.09	-148.55	0.19
(3, 1, 2, 5)	-134.78	0.09	-132.86	0.19
(15, 13, 14, 17)	-122.48	0.00	-109.01	0.21
2D (9, 7, 8, 12)	-148.02	0.04	-161.61	0.13
(3, 1, 2, 5)	-124.65	0.11	-137.11	0.29
(15, 13, 14, 17)	-115.89	0.06	-116.9	0.12
2E (9, 7, 8, 12)	-136.02	0.10	-148.54	0.19
(3, 1, 2, 5)	-134.79	0.10	-132.89	0.19
(15, 13, 14, 17)	-122.48	0.00	-109.51	0.20

 Table: ST 6. Relative change in torsion frequency HSCH in dimer and trimer of the methanethiol

 with respect to monomer

- 3. All frequencies are calculated by subtracting the frequency of dimer/trimer from the frequency of the monomer for the corresponding vibrational mode.
- 4. I is the computed IR intensity of the dimer/trimer and I_o is the computed IR intensity of the monomer.

Table: ST 7. Summary of the FMO analysis of the dimers and trimers of the methanethiol molecule. (HOMO & LUMO values are in eV)

Conformers of dimer	НОМО	LUMO	Conformers of trimer	НОМО	LUMO
1A	-9.572426	3.754901	2A	-9.657598	3.421017
1B	-9.582222	3.940755	2B	-9.651067	3.881162
1C	-9.617325	3.945925	2C	-9.650795	3.881706
1D	-9.582222	3.939939	2D	-9.650795	3.881706
1E	-9.572698	3.756806	2E	-9.651067	3.979667

	Dimer										
Conformer	Donor (i)	Acceptor (j)	E(2) (kJ/mol)	E(j) - E(i) (a.u.)	F(i, j) (a.u.)						
		Intramo	lecular interaction in	n molecular unit 1	1						
	σS1-H2	σ*C3-H4	2.10	0.97	0.040						
	LP(2) S1	σ* C3-H5	3.66	0.68	0.045						
	LP(2) S1	σ* C3-H6	4.07	0.68	0.047						
1.4		Intramo	lecular interaction in	n molecular unit 2							
IA	σS7-H8	σ*C9-H11	2.14	0.98	0.041						
	LP(2) S7	σ* C9-H10	3.22	0.70	0.043						
	LP(2) S7	σ* C9-H12	3.95	0.68	0.047						
	Intermolecular interaction of molecular unit 2 to 1										
	LP(2) S7	σ* S1-H2	4.00	0.48	0.039						
Intramolecular interaction in molecular unit 1											
	σS1-H2	σ*C3-H4	4.44	1.08	0.062						
	LP(2) S1	σ* C3-H5	3.06	1.41	0.059						
10	LP(2) S1	σ* C3-H6	6.17	1.07	0.073						
IB	Intramolecular interaction in molecular unit 2										
	σS7-H8	σ*C9-H11	2.93	1.43	0.058						
	LP(2) S7	σ* C9-H10	5.90	1.07	0.071						
	LP(2) S7	σ* C9-H12	4.85	1.07	0.064						
		Intramo	elecular interaction ir	molecular unit 1							
	σS1-H2	σ*C3-H4	6.12	1.07	0.072						
	LP(2) S1	σ* C3-H5	2.95	1.42	0.058						
10	LP(2) S1	σ* C3-H6	4.64	1.07	0.063						
IC		Intramo	elecular interaction ir	molecular unit 2	1						
	σS7-H8	σ*C9-H11	6.12	1.07	0.072						
	LP(2) S7	σ* C9-H10	2.95	1.42	0.058						
	LP(2) S7	σ* C9-H12	4.64	1.07	0.063						
		Intramo	elecular interaction ir	molecular unit 1	-						
	σS1-H2	σ*C3-H4	4.19	0.69	0.048						
	LP(2) S1	σ* C3-H5	2.07	0.99	0.040						
15	LP(2) S1	σ* C3-H6	3.34	0.68	0.043						
ID		Intramo	blecular interaction in	nmolecular unit 2	1						
	σS7-H8	σ*C9-H11	2.15	0.97	0.041						
	LP(2) S7	σ* C9-H10	3.09	0.70	0.042						
	LP(2) S7	σ* C9-H12	4.27	0.69	0.043						
		Intramo	ecular interaction ir	molecular unit 1							
	σS5-H6	σ*C1-H3	3.07	1.41	0.059						
	LP(2) S5	σ* C1-H2	5.17	1.06	0.066						
1.5	LP(2) S5	σ* C1-H4	5.92	1.06	0.071						
IE		Intramo	lecular interaction in	molecular unit 2	1						
	σS11-H12	σ*C7-H10	3.03	1.41	0.058						
	LP(2) S11	σ* C7-H8	4.94	1.08	0.066						
	LP(2) S11	σ* C7-H9	5.58	1.07	0.069						

Table: ST 8. Summary of second order perturbation theory analysis of fock matrix in NBO analysis Inter molecular interactions

	Intermolecular interaction of molecular unit 2 to 1									
	LP(2) S11	σ* S5-H6	2.59	0.83	0.042					
			Trimer							
		Intramo	lecular interaction in	molecular unit 1						
	σS1-H3	σ*C2-H4	2.08	0.97	0.040					
	LP(2) S1	σ*C2-H5	4.48	0.69	0.050					
	LP(2) S1	σ*C2-H6	2.77	0.69	0.039					
		Intramo	lecular interaction in	molecular unit 2						
	σS7-H9	σ*C8-H10	2.08	0.97	0.40					
	LP(2) S7	σ*C8-H11	4.48	0.69	0.050					
	LP(2) S7	σ*C8-H12	2.77	0.69	0.039					
2.4	Intramolecular interaction in molecular unit 3									
ZA	σS13-H15	σ*C14-H16	2.08	0.97	0.40					
	LP(2) S13	σ*C14-H17	4.48	0.69	0.050					
	LP(2) S13	σ*C14-H18	2.77	0.69	0.039					
		Intermole	cular interaction of m	olecular unit 1 to 2						
	LP(2) S1	σ*S7-H9	4.85	0.48	0.043					
	`, ź	Intermole	cular interaction of n	olecular unit 2 to 3						
	LP(2) S7	σ*S13-H15	4.83	0.48	0.043					
	`, ´,	Intermole	cular interaction of n	olecular unit 3 to 1						
	LP(2) S13	σ*S1-H3	4.85	0.48	0.043					
	`, <i>,</i>	Intramo	lecular interaction in	molecular unit 1						
	σS1-H9	σ*C2-H4	2.04	0.98	0.040					
	LP(2) S1	σ*С2-Н3	4.40	0.70	0.050					
	LP(2) S1	σ*C2-H5	2.74	0.70	0.039					
		Intramo	lecular interaction in	molecular unit 2	•					
	σ S7-H12	σ*C8-H10	2.06	0.98	0.040					
	LP(2) S7	σ*C8-H9	2.83	0.69	0.040					
	LP(2) S7	C8-H11	4.39	0.69	0.050					
	Intramolecular interaction in molecular unit 3									
2B	σ S13- H118	σ*C14-H17	2.05	0.97	0.040					
	LP(2) S13	σ*C14-H15	4 4 9	0.70	0.050					
	LP(2) S13	σ*C14-H16	2.68	0.69	0.039					
		Intermole	cular interaction of m	olecular unit 1 to 3						
	LP(2) S1	σ*S13-H18	5.54	0.48	0.046					
		Intermole	cular interaction of m	olecular unit 2 to 1	0.0.0					
	LP(2) S7	σ*S1-H6	5.51	0.48	0.046					
		Intermole	ular interaction of n	olecular unit 3 to 2	0.0.10					
	LP(2) S13	σ*S7-H12	4.81	0.48	0.043					
	(_)~10	Intramo	lecular interaction in	molecular unit 1	1					
	σS1-H3	σ*C2-H4	2.04	0.98	0.040					
	LP(2) S1	σ*C2-H5	2.74	0.70	0.039					
	LP(2) S1	σ*C2-H6	4.39	0.70	0.050					
2C		Intramo	lecular interaction in	molecular unit 2						
	σS7-H3	σ*C8-H10	2.05	0.98	0.040					
	LP(2) S7	σ*C8-H11	4.49	0.70	0.050					
	LP(2) S7	σ*C8-H12	2.67	0.69	0.039					
		Intramo	lecular interaction in	molecular unit 3						
	1									

	σS13-H15	σ*C14-H16	2.06	0.98	0.040						
	LP(2) S13	σ*C14-H17	4.39	0.69	0.050						
	LP(2) S13	σ*C14-H18	2.83	0.69	0.040						
		Intermoleo	cular interaction of m	olecular unit 1 to 2							
	LP(2) S1	σ*S7-H9	5.53	0.48	0.046						
		Intermoleo	cular interaction of m	olecular unit 2 to 3							
	LP(2) S7	σ*S13-H15	4.80	0.48	0.043						
	Intermolecular interaction of molecular unit 3 to 1										
	LP(2) S13	σ*S1-H3	5.51	0.48	0.046						
	Intramolecular interaction in molecular unit 1										
	σS1-H3	σ*C2-H4	2.08	0.97	0.040						
	LP(2) S1	σ* C2-H5	4.31	0.68	0.049						
	LP(2) S1	σ* C2-H6	3.22	0.69	0.042						
		Intramo	lecular interaction in	molecular unit 2							
	σS7-H9	σ*C8-H10	2.06	0.98	0.040						
	LP(2) S7	σ* C8-H11	4.53	0.69	0.050						
	LP(2) S7	σ* C8-H12	2.67	0.70	0.039						
2D		Intramo	lecular interaction in	molecular unit 3							
	LP(2) S13	σ* C14-H17	4.50	0.71	0.051						
	LP(2) S13	σ* C14-H18	2.12	0.71	0.035						
		Intermoleo	cular interaction of m	olecular unit 1 to 3							
	LP(2) S1	σ* C14-H16	2.03	0.69	0.042						
		Intermoleo	cular interaction of m	olecular unit 2 to 1	_						
	LP(2) S7	σ* S1-H3	5.00	0.49	0.044						
	Intermolecular interaction of molecular unit 3 to 2										
	LP(2) S13	σ* S7-H9	5.33	0.50	0.046						
	Intramolecular interaction in molecular unit 1										
	σS1-H3	σ*C2-H4	2.05	0.97	0.040						
	LP(2) S1	σ* C2-H5	4.49	0.70	0.050						
	LP(2) S1	σ* C2-H6	2.67	0.69	0.039						
	Intramolecular interaction in molecular unit 2										
	σS7-H3	σ*C8-H10	2.06	0.98	0.040						
	LP(2) S7	σ* C8-H11	4.39	0.69	0.050						
26	LP(2) S7	σ* C8-H12	2.83	0.69	0.040						
ZE		Intramo	lecular interaction in	molecular unit 3							
	σS13-H3	σ*C14-H16	2.04	0.98	0.040						
	LP(2) S13	σ* C14-H17	2.74	0.70	0.039						
	LP(2) S13	σ* C14-H18	4.40	0.70	0.050						
		Intermoleo	cular interaction of m	olecular unit 1 to 2							
	LP(2) S1	σ* S7-H9	4.80	0.48	0.043						
		Intermole	cular interaction of m	olecular unit 3 to 1							
	LP(2) S13	σ* S1-H3	5.53	0.48	0.046						

S-H vibration	B3LYP/cc-pVDZ		B3LYP/c	B3LYP/cc-pVTZ		B3LYP/cc-pVQZ		CCSD/cc- pVDZ	
mode	v	Ι	v	Ι	v	Ι	v	Ι	
1A and 1E (7,8)	2599.43	45.13	2523.39	51.99	2507.78	57.01	2729.78	7.51	2601
(1, 2)	2652.25	8.00	2575.97	4.84	2560.67	3.34	2730.36	6.80	
1B and 1D (7,8)	2650.52	14.30	2575.09	9.39	2559.79	7.3412	2732.04	16.50	
(1,2)	2655.37	419	2578.79	2.1675	2562.92	0.9326	2734.71	4.83	
1C (7,8)	2651.23	21.30	2575.78	0.00	2560.58	0.00	2731.56	26.26	
(1, 2)	2651.29	0.00	2575.81	12.47	2560.61	8.57	2731.57	0.00	
2A (1, 3)	2574.28	0.49	2616.32	0.13	2620.16	0.12	2718.72	0.61	2567
(7,9)	2583.75	123.46	2621.01	74.80	2624.17	72.92	2723.05	16.00	
(13, 15)	2584.39	123.26	2621.30	74.85	2624.40	72.81	2723.08	16.00	
2B, 2C, and 2E (1, 6)	2562.47	17.48	2604.16	24.70	2608.25	30.35	2719.71	6.64	
(13, 18)	2572.37	151.17	2609.30	100.23	2613.22	93.21	2727.13	5.31	
(7, 12)	2580.71	116.24	2621.26	57.99	2625.09	54.17	2728.70	4.16	
2D (7, 9)	2580.62	47.99	2615.43	34.07	2617.12	41.74	2720.80	11.86	
(1, 3)	2587.27	114.99	2619.08	80.55	2620.79	77.03	2728.00	6.15	
(13, 15)	2652.02	8.88	2670.44	4.91	2670.14	3.21	2731.23	11.46	

Table: ST 9. Absolute values of the S-H vibrational frequencies at different levels of theory. All frequencies are given in cm⁻¹

Table: ST 10. Topological parameters for bonds of interacting atoms: electron density (ρ BCP), Laplacian of electron density (∇^2 BCP), kinetic electron energy density (G BCP), potential electron energy density (VBCP), total electron energy density (HBCP), estimated interaction energy (E_{int}) at bond critical point (BCP)

Dimer												
Confor.	Critical point	$\rho_{BCP}(a.u.)$	$\nabla^2 \rho_{BCP}$	G _{BCP}	V _{BCP} (a.u.)	$H_{BCP}(a.u.)$	E _{int} (kcal/mol)					
	number		(a.u.)	(a.u.)								
1.4	19(CHS)	0.007675	0.019130	0.004387	-0.003992	0.000395	1.253					
IA	24(SHS)	0.002562	0.015372	0.003230	-0.000262	0.000613	0.821					
	4(CHS)	0.005405	0.015802	0.003412	-0.002874	0.000528	0.902					
1B	8(SHS)	0.003768	0.011871	0.002417	-0.001867	0.005504	0.586					
	13(CHS)	0.006043	0.016176	0.003590	-0.003135	0.000454	0.984					
10	9(CHS	0.005072	0.014728	0.003130	-0.002578	0.000552	0.809					
IC	4(CHS)	0.005072	0.014728	0.003130	-0.002578	0.000552	0.809					
	4(CHS)	0.005407	0.015807	0.003413	-0.002875	0.000538	0.902					
1D	8(SHS)	0.003763	0.011860	0.002415	-0.001865	0.000550	0.585					
	13(SHC)	0.006049	0.016186	0.003592	-0.003138	0.000454	0.985					
112	13(CHS)	0.007669	0.019118	0.004384	-0.003989	0.000395	1.252					
IE	15(SHS)	0.005124	0.015372	0.003230	-0.002617	0.000613	0.821					
			T	rimer								
2A	7((CHHC)	0.002358	0.009885	0.001816	-0.001160	0.000655	0.364					

	8(SHS)	0.008447	0.019123	0.004539	-0.004298	0.000242	1.349
	10(CHHC)	0.002368	0.009924	0.001824	-0.001167	0.000657	0.366
	16(CHHC)	0.002360	0.009895	0.001818	-0.001162	0.000656	0.365
	17(SHS)	0.008451	0.019130	0.004541	-0.004300	0.000241	1.349
	20(SHS)	0.008447	0.019123	0.004539	-0.004298	0.000242	1.349
	19(SHS)	0.009036	0.021120	0.005007	-0.004733	0.000273	1.485
20	22(CHHC)	0.002678	0.011446	0.002095	-0.001329	0.000766	0.417
20	23(SHS)	0.007256	0.017466	0.004007	-0.003647	0.000360	1.144
	24(SHS)	0.008500	0.020637	0.004812	-0.004464	0.000348	1.401
	6(SHS)	0.009041	0.021121	0.005008	-0.004736	0.000272	1.486
20	14(CHHC)	0.002666	0.011395	0.002086	-0.001322	0.000763	0.415
20	15(SHS)	0.007279	0.017512	0.004019	-0.003660	0.000359	1.148
	16(SHS)	0.008502	0.020635	0.004812	-0.004465	0.000347	1.401
	7(SHS)	0.380863	-12.0882	0.006628	-3.035302	-3.028673	952.341
	10(CHHC)	120.6446	666646.6	5.189772	-166672.0	-166666.8	52294140.5
2D	12(SHS)	0.379907	-12.0370	0.006653	-3.022550	-3.015897	948.340
	14(SHS)	0.381102	-12.1061	0.006623	-3.039763	-3.033140	953.740
	20(CHHC)	0.001891	0.007797	0.001478	-0.001007	0.000471	0.316
	6(SHS)	0.009030	0.021103	0.005003	-0.004730	0.000273	1.484
20	13(CHHC)	0.002652	0.011340	0.002075	-0.001314	0.000760	0.412
	14(SHS)	0.007253	0.017470	0.004007	-0.003646	0.000361	1.144
	15(SHS)	0.008494	0.020619	0.004808	-0.004461	0.000347	1.400

[Note: Topological results also confirms the similarity of the conformers 1A and 1E; 1B and 1D; 2B, 2C, and 2E. But the BCP number is different correspond to each conformer that is why we provide topological results in to separate column.]

Table: ST11. Thermodynamic parameters of different conformers of dimer and trimer of the methanethiol molecule

	Dimer									
	Methods	∆E kJ/mol.	D ₀ kJ/mol.	$\Delta \mathbf{G} \mathbf{kJ/mol.}$	$\Delta H kJ/mol.$	Δ S kJ/mol.				
	B3LYP/cc-pVDZ	-4.54	-1.10	29.87	0.96	-0.10				
1A	B3LYP/cc-pVTZ	-1.87	2.60	42.57	1.53	-0.14				
and	B3LYP/cc-pVQZ	-1.30	3.10	43.48	1.85	-0.14				
1E	B3LYP/CBS	-0.88	3.46	44.14	2.08	-0.14				
	CCSD/cc-pVDZ	-3.76	-0.65	28.67	1.74	-0.09				
	B3LYP/cc-pVDZ	-4.00	-1.20	28.54	1.44	-0.09				
1B	B3LYP/cc-pVTZ	-1.89	2.39	42.27	1.56	-0.14				
and	B3LYP/cc-pVQZ	-1.28	2.96	43.25	1.92	-0.14				
1D	B3LYP/CBS	-0.83	3.38	43.97	2.18	-0.14				
	CCSD/cc-pVDZ	-4.49	-2.45	27.98	0.06	-0.09				
	B3LYP/cc-pVDZ	-3.03	-1.07	30.36	-0.23	-0.10				
	B3LYP/cc-pVTZ	-1.11	2.89	41.77	2.24	-0.13				
1C	B3LYP/cc-pVQZ	-0.58	3.41	42.80	2.54	-0.14				
	B3LYP/CBS	-0.19	3.79	43.55	2.76	-0.15				
	CCSD/cc-pVDZ	-4.44	-2.37	28.04	-1.56	-0.10				
			Trimer							
2.	B3LYP/cc-pVDZ	-13.07	-6.22	-2.16	59.46	0.21				
2A	B3LYP/cc-pVTZ	-6.66	-1.06	3.89	60.49	0.19				

	B3LYP/cc-pVQZ	-5.48	-0.14	5.02	59.8	0.18
	B3LYP/CBS	-4.62	0.53	5.84	59.30	0.17
	CCSD/cc-pVDZ	-9.33	-2.93	1.69	62.62	0.20
20	B3LYP/cc-pVDZ	-15.07	-7.97	-4.04	57.99	0.21
2B,	B3LYP/cc-pVTZ	-8.85	-3.00	1.81	58.33	0.19
2C	B3LYP/cc-pVQZ	-7.69	-2.04	2.93	58.23	0.19
and 2E	B3LYP/CBS	-6.84	-1.34	3.75	58.16	0.19
	CCSD/cc-pVDZ	-10.27	-3.3	0.99	64.8	0.21
	B3LYP/cc-pVDZ	-12.93	-6.38	-1.95	59.12	0.20
	B3LYP/cc-pVTZ	-7.59	-2.13	3.07	57.96	0.18
2D	B3LYP/cc-pVQZ	-6.48	-1.24	4.12	56.54	0.18
	B3LYP/CBS	-5.67	-0.59	4.89	55.50	0.18
	CCSD/cc-pVDZ	-11.61	-5.19	-0.45	60.92	0.21

Note: - Z-matrix of the optimized geometries of the methanethiol cluster at CCSD/cc-pVDZ level of theory

Monomer

Symbolic	Z-matrix:		
Charge =	0 Multiplicity = 1		
С	0.04791	1.15862	0.
Н	1.09202	1.4609	0.
Н	-0.43099	1.55252	0.89181
Н	-0.43099	1.55252	-0.89181
S	0.04791	-0.66753	0.
Н	-1.28404	-0.83712	0.

Dimer

1D 1A 1B 1C Symbolic Z-matrix: Symbolic Z-matrix: Symbolic Z-matrix: Symbolic Z-matrix: Charge = 0 Multiplicity = 1 S 1.80964 0.63013 -0.3411 S -1.94593 0.6054 -0.31355 S 2.10164 -0.49592 -0.28156 S 1.85594 -0.5685 -0.34799 H 0.65051 0.01184 -0.7034 H -1.2726 0.13319 -1.39453 Н 3.29138 -0.47535 0.36027 Н 3.13406 -0.98249 -0.14592 2.57623 -0.81531 0.49435 C C -2.00087 -0.97853 0.61877 C 1.76382 1.30089 -0.1647 C 1.00135 1.96298 0.59979 H 3.54598 -0.47023 0.88062 Н -0.9868 -1.36227 0.79656 H 2.5013 1.88537 -0.73825 Н 2.68189 1.69511 0.14153 H 1.96332 -1.16351 1.33802 H -2.47626 -0.74709 1.58271 Н 0.76189 1.45473 -0.59647 H 0.95396 1.43556 0.55381 2.74918 -1.63894 -0.21299 H H -2.60956 -1.72662 0.09154 H 1.74802 1.63661 0.88475 Н 2.22763 0.81431 1.65001 S -2.04283 -0.64698 -0.30887 S 1.85717 -0.56872 -0.34718 -2.10164 0.49592 0.28156 S S -1.9441 0.60542 -0.31458 H -1.64863 -1.3836 0.76242 Н 3.13733 -0.97801 -0.14867 H -3.29138 0.47535 -0.36027 Н -1.26825 0.13087 -1.39295 С -2.10242 0.97835 0.54867 С -1.76382 -1.30089 0.1647 1.96219 1.00266 0.5985 C C -2.00269 -0.97698 0.62 H -1.10232 1.27736 0.89292 Н -0.76189 -1.45473 Η 0.59647 2.67806 1.69767 0.13747 0.80102 Н -0.98952 -1.36162 Н -2.45476 1.70112 -0.20101 -2.5013 -1.88537 0.73825 H 0.95192 1.43407 0.55488 Η H -2.48008 -0.74354 1.58247 H -2.8151 0.95726 1.38472 Н Η -1.74802 -1.63661 -0.88475 Н -2.61096 -1.72523 2.23016 0.8174 1.64818 0.0925

		1 F
Symbolic	Z-matrix:	TL

Charge = 0 M	ultiplicity = 1		
С	-2.57665	-0.81521	0.49427
Н	-1.96322	-1.16416	1.33724
н	-3.54582	-0.4696	0.88148
Н	-2.75061	-1.63829	-0.21344
S	-1.8096	0.63023	-0.34102
Н	-0.65045	0.01179	-0.70293
С	2.10305	0.9784	0.54851
н	1.10301	1.27788	0.89247
Н	2.81559	0.95686	1.38464
н	2.45592	1.7008	-0.20126
S	2.04264	-0.64717	-0.30883
н	1.64847	-1.38344	0.76272

Trimer

Symbolic Z-matrix:		2Δ		Symbolic Z-mat	rix:	2R		Symboli	c Z-matrix:	20		Symbolic Z-matrix:		2D	
Charge = 0 Multip	licity = 1	27		Charge = 0 Mu	ltiplicity = 1	20		Charge	= 0 Multiplicity = 1	20		Charge = 0 Multip	licity = 1	20	
S	-0.99556	2.20104	-0.66784	S	2.15686	-0.24412	0.81484	S	2.15661	-0.23877	0.81419	S	-0.39682	2.48325	-0.53966
С	-0.90035	2.33255	1.15716	С	3.29549	-0.22755	-0.62756	C	3.29516	-0.21823	-0.62824	С	-0.44059	2.04845	1.2404
Н	0.23967	1.67632	-0.84161	Н	3.85275	0.7184	-0.67634	Н	1.35619	0.78882	0.40511	Н	-1.02636	1.36579	-0.96994
Н	-1.84999	2.7809	1.49278	Н	4.00463	-1.05285	-0.47193	H	4.00734	-1.04088	-0.47247	Н	0.12576	2.83	1.77327
Н	-0.07092	2.98893	1.46657	н	2.7518	-0.39595	-1.56763	H	2.75197	-0.38885	-1.5682	Н	-1.47443	2.03837	1.62328
н	-0.79177	1.34266	1.63044	Н	1.35992	0.78618	0.4058	H	3.84891	0.72976	-0.67726	Н	0.04011	1.07407	1.42486
S	-1.40788	-1.9623	-0.66834	S	-0.7343	2.17527	-0.66729	S	-1.19639	-1.88139	-0.75277	S	-1.61014	-1.48512	-0.76941
C	-1.57205	-1.94617	1.15642	С	-1.67891	2.57463	0.85727	C	-1.98343	-2.44924	0.80758	С	-2.54409	-1.48019	0.80749
Н	-1.57049	-0.63011	-0.84199	н	-1.41354	1.89865	1.68237	Н	0.03044	-1.60139	-0.22335	Н	-0.37724	-1.49397	-0.21205
н	-1.48674	-2.99295	1.49177	н	-1.39973	3.60103	1.13449	H	-3.02818	-2.6854	0.56038	н	-3.61334	-1.44953	0.54105
н	-2.5554	-1.55549	1.46452	Н	-2.76131	2.53824	0.66999	Н	-1.4928	-3.35647	1.18728	Н	-2.34864	-2.39613	1.38804
Н	-0.76937	-1.35794	1.63113	н	-1.18376	0.89495	-0.81056	Н	-1.9666	-1.66211	1.57436	Н	-2.30325	-0.59241	1.41418
S	2,40396	-0.23778	-0.66783	S	-1.19989	-1.87841	-0.7524	S	-0.74138	2.17324	-0.66733	S	2.24687	-0.99628	0.69953
c	2,47145	-0.38803	1,15696	С	-1.99519	-2.44007	0.80599	C	-1.6837	2.57391	0.85832	С	2.46417	-0.33931	-0.99841
н	1.33197	-1.04516	-0.84184	Н	-1.50933	-3.34821	1.18962	H	-1.18931	0.89206	-0.80769	Н	2.78251	-2.21643	0.47034
н	3, 33465	0.21	1.4927	н	-1.97863	-1.65131	1.57111	Н	-1.40581	3,60135	1.13296	Н	1.97771	0.6495	-1.00949
н	2,62557	-1.43485	1.46508	н	-3.03979	-2.67304	0.55516	H	-2.7664	2,53521	0.67326	Н	3.53171	-0.22626	-1.2462
Н	1.56011	0.01217	1.63127	н	0.02596	-1.60203	-0.21881	Н	-1.41545	1.90002	1.68421	Н	1.9699	-0.98631	-1.74148

Symbolic	Z-matrix:	25	
Charge =	0 Multiplicity = 1	ZE	
S	-1.64106	-1.3988	-0.61091
С	-2.91442	-1.09152	0.67029
Н	-0.57594	-1.39849	0.22409
Н	-3.88318	-1.04386	0.14646
Н	-2.94725	-1.91414	1.40263
Н	-2.74314	-0.13374	1.18757
S	0.1696	2.37109	-0.71491
С	-0.60136	2.26871	0.94406
Н	-0.47649	1.29884	-1.22732
Н	-0.15151	3.06854	1.55526
Н	-1.6895	2.43499	0.88804
Н	-0.39167	1.29556	1.41746
S	2.14075	-0.82285	0.87207
С	2.3516	-1.45374	-0.83572
Н	1.94812	0.46814	0.51538
Н	2.44333	-2.54987	-0.76236
Н	1.47749	-1.20916	-1.46125
Н	3.26615	-1.0486	-1.29765