Unraveling site-specific energy transfer driven tunable emission characteristics of Eu³⁺ & Tb³⁺ co-doped Ca₁₀ (PO₄)₆F₂ phosphors

Nimai Pathak^a*, Bhagyalaxmi Chundawat^b, Pratik Das^c, Pampa Modak^d, and Brindaban Modak^{ef}

^a Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085,India
^b Ex MSc student from KJ Somaiya College of Science & Commerce, Vidyavihar, Mumbai
^c Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085,India ^cRSD, ^dAtomic Energy Regulatory Board, Anushaktinagar Mumbai-400094, India
^eTheoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai-400 085, India
^fHomi Bhabha National Institute (HBNI), Mumbai
*Email: nmpathak4@gmail.com, nimai@barc.gov.in

Telephone- +91-22-25590715 Fax- +91-22-25405151

Instrumentation

X-Ray diffraction (XRD)

We have used Proto powder X-ray diffractometer (Canada) to characterise the prepared compounds. CuK α (λ = 1.5406 and 1.5444 Å) monochromatic radiation has been used as X-ray radiation source. All the diffraction patterns were collected within the 2 θ range of 20-90 with a step width of 0.02 and scan rate of 5s.

Fourier-transform infrared spectroscopy (FTIR) study

A Bruker Platinum ATR FTIR spectrometer in the spectral range 2000-500 cm⁻¹ has been used to record all the FTIR spectra.

Photoluminescence study (PL)

An Edinburgh CD-920 spectrometer (from Edinburgh Analytical Instruments, UK)with M 300 monochromator has been used to record the PL emission spectra of all the samples. The data acquisition and analysis were carried with the help of F-900 software provided by Edinburgh Analytical Instruments. A Xenon flash with a frequency of 100 Hz has been used as excitation source. For each of the emission and excitation spectrum a minimum of five scans has been taken to minimize the peak intensity fluctuation and to maximize S/N ratio. To perform the lifetime study for the compounds we have used the well established Time-correlated single-photon counting (TCSPC) technique.

X-ray fluorescence (XRF): An ATI-micro XRF instrument is used to record the XRF spectrum.

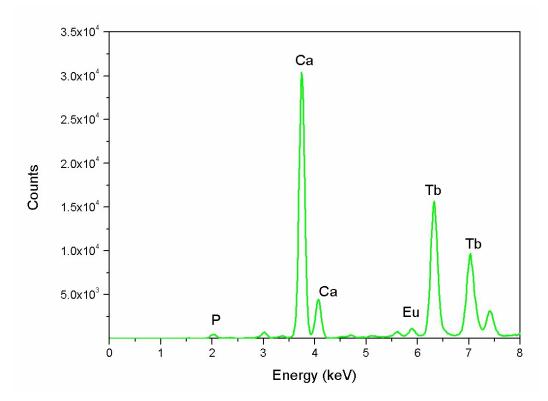


Figure S1: XRF spectra of Eu_{0.1}Tb_{0.5}:CPF

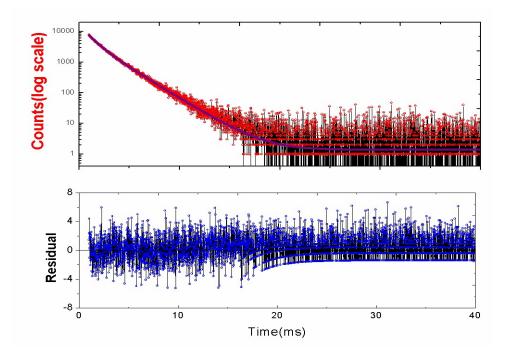


Figure S2: Photoluminescence decay profile at λ_{ex} = 230 nm and λ_{em} = 547 nm for Eu_{0.3}-Tb_{0.5}:

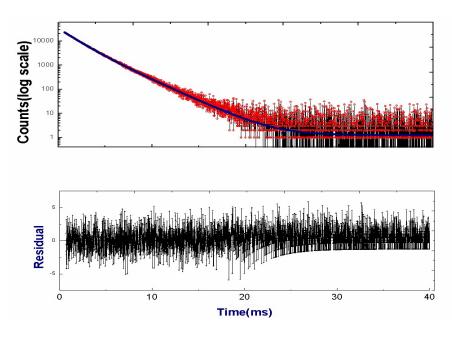


Figure S3: Photoluminescence decay profile at λ_{ex} = 230 nm and λ_{em} = 620 nm for Eu_{0.3}-Tb_{0.5}: CFP

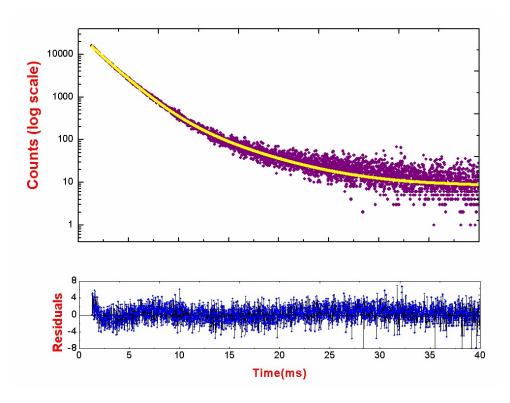


Figure S4: Photoluminescence decay profile at λ_{ex} = 230 nm and λ_{em} = 547 nm for Eu_{0.5}-Tb_{0.3}: CFP

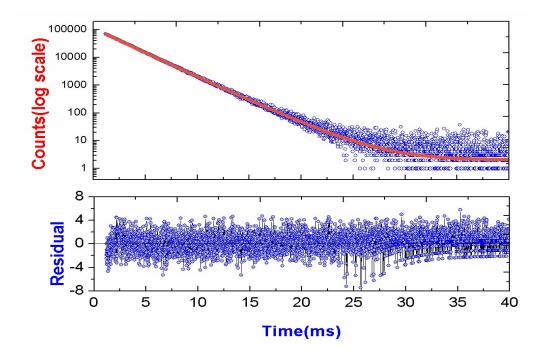


Figure S5: Photoluminescence decay profile at λ_{ex} = 230 nm and λ_{em} = 620 nm for Eu_{0.5}-Tb_{0.3}: CFP