Supporting Information

Fluorescent N-functionalized carbon nanodots from carboxymethylcellulose for sensing of high-valence metal ions and cell imaging

Zhenzhen Liu ^c, Runsen Li ^c, Yan Li ^c, Jingpeng Zhou ^d, Yumei Gong ^c, Haiqiang Shi ^c,

Yanzhu Guo^{a, b, c, d}*, Haiming Li^{c,} * Zhiwei Wang^{a,} * and Fengshan Zhang^d

^a Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of

Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

^b State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China.

^c Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034, China.

^d Shandong Huatai Paper Co., Ltd., Dongying, 275335, China.

*Corresponding Authors E-mail: guoyz@dlpu.edu.cn (Yanzhu Guo), lihm@dlpu.edu.cn

(Haiming Li), wangzhiwei@gxu.edu.cn; Tel.: +86-15164033963 (Yanzhu Guo).

Samples	CMC/N source (mass ratio)	Temperatur e (°C)	Time (h)	QYs (%)	
CDs ^a	1:0	220	36	4.9	
N-CDs ^b	1:0.15	220	36	13.1	
N-CDs ^b	1:0.45	220	36	19.2	
N-CDs ^b	1:0.75	220	36	22.9	
N-CDs ^b	1:0.90	220	36	21.6	
N-CDs ^b	1:0.75	180	36	7.8	
N-CDs ^b	1:0.75	200	36	13.1	
N-CDs ^b	1:0.75	240	36	21.7	
N-CDs ^c	1:0.75	220	36	15.4	
N-CDs ^d	1:0.75	220	36	14.7	
N-CDs ^e	1:0.75	220	36	10.9	
N-CDs ^f	1:0.75	220	36	13.4	

Table S1. QY of carbon dots prepared under various reaction conditions

Reaction conditions: ^a CMC (M.W. 90000 g/mol); ^b CMC (M.W. 90000 g/mol), ethylenediamine (EDA); ^c CMC (M.W. 250000 g/mol), ethylenediamine (EDA); ^d CMC (M.W. 700000 g/mol), ethylenediamine (EDA); ^e CMC (M.W. 90000 g/mol), 1,2-propanediamine; ^f CMC (M.W. 90000 g/mol), 1,6-hexamethylenediamine.

Fig. S1 TEM images and particle size distributions of N-CDs samples. Conditions: (a, b) CMC (M.W. 250000 g/mol), (c, d) CMC (M.W. 700000 g/mol).

Elemental commonition		5	
Elemental composition	CMC	CDs	N-CDs
С	57.98%	61.10%	68.75%
0	40.22%	29.28%	11.90%
Ν	-	-	19.35%

Table S2. The contents of C, O and N elements in CMC, CDs and N-CDs samples by XPS

 analysis

.

Fig. S2 ¹³C-NMR spectrum of N-CDs in D_2O .

Sources	Dessivators	Linear range	$K_{\rm SV}$ (M ⁻	LOD	Dof
	Passivators	(µM)	1)	(µM)	Kel.
Alginic acid	Ethanediamine	0-50	2390	10.98	[S1]
Vitamin B1	Ethylenediamine	0.1-1000	-	0.177	[S2]
pyrocatechol	Ethylenediamine	5-600	-	1.20	[S3]
graphite	-	10-200	-	1.80	[S4]
L-glutamic acid	-	0-50	-	4.67	[S5]
P. acidus fruits	Ammonia	2-25	-	0.90	[S6]
Blueberry	-	12.5-100	3148	9.97	[S7]
α-cyclodextrin	-	16-166	-	6.05	[S8]
P. avium fruits	Ammonia	0-100	2095.8	0.96	[S9]
DL-malic acid	Ethanolamine	6-200	2460	0.80	[S10]
CMC	Ethylenediamine	0-1000	4550	0.8	This work

Table S3. Fe³⁺ sensing comparison with other sensors.

Fig. S3 UV-vis spectra of N-CDs before/after addition of Fe^{3+} (a, b), Fe^{2+} (c, d), Cr^{3+} (e, f), CrO_4^{2-} (g, h), $Cr_2O_7^{2-}$ (i, j) and MnO_4^{-} (k, l) and the spectra overlaps between N-CDs and various types of ions.

	F _R /F _F			Recovery rate (%)				
Reducing acid	Fe ³⁺	MnO ₄ -	CrO ₄ ²⁻	$Cr_2O_7^{2-}$	Fe ³⁺	MnO ₄ -	CrO ₄ ²⁻	Cr ₂ O ₇ ²⁻
Ti ³⁺	8.1	14.3	10.5	11.1	96.4	58.8	87.4	84.8
ascorbic acid	3.7	12.9	6.5	2.4	58.7	52.7	50.6	12.1
Sn^{4+}	2.6	3.6	3.5	1.3	22.3	11.8	23.4	2.6
hydroxylamine hydrochloride	1.4	1.6	1.6	0.6	6.3	3.0	5.6	-
GSH	1.1	7.1	1.3	0.4	2.1	26.7	3.3	-

Table S4. Fluorescence recovery of "turn off-on" sensing system by different reductive agents

References

[S1] Y. Liu, Y. Liu, S. Park, Y. Zhang, T. Kim, S. Chae, M. Park and H. Kim, *J. Mater. Chem. A*, 2015, **3** 17747

- [S2] F. Wu, M. Yang, H. Zhang, S. Zhu, X. Zhu and K. Wang, Opt. Mater., 2018, 77, 258.
- [S3] F. Niu, Y. Ying, X. Hua, Y. Niu, Y. Xu and Y. Long, Carbon, 2018, 127, 340.

[S4] M. Liu, Y. Xu, F. Niu, J. J. Gooding and J. Liu, Analyst, 2016, 141, 2657.

[S5] J. Yu, C. Xu, Z. Tian, Y. Lin and Z. Shi, New J. Chem., 2016, 40, 2083.

[S6] R. Atchudan, T. N. J. I. Edison, K. R. Aseer, S. Perumal, N. Karthik and Y. R. Lee, *Biosens. Bioelectron.*, 2018, **99**, 303.

[S7] A. M. Aslandaş, N. Balcı, M. Arık, H. Şakiroğlu, Y. Onganer and K. Meral, Appl. Surf. Sci., 2015, 356, 747.

[S8] H. Hamishehkar, B. Ghasemzadeh, A. Naseri, R. Salehi and F. Rasoulzadeh, *Spectrochim. Acta A*, 2015, **150**, 934.

[S9] T. N. J. I. Edison, R. Atchudan, J. J. Shim, S. Kalimuthu, B. C. Ahn, and Y. R. Lee, *J. Photoch. Photobio. B*, 2016, **158**, 235.

[S10] W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang and C. Dong, *Anal. Chim. Acta*, 2015, 898, 116.