Supplementary information

3D-printed monolithic biofilters based on polylactic acid (PLA) - hydroxyapatite (HAp) composite for heavy metal removal from aqueous medium

Natalia Fijoł^a, Hani Nasser Abdelhamid^{a,b}, Binsi Pillai^c, Stephen A. Hall^d, Nebu Thomas^f and Aji

P. Mathew^{a*}

^a Department of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 106 91, Stockholm, Sweden

^bAdvanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt

^c ICAR-Central Institute of Fisheries Technology, Matsyapuri, Willington Island, Cochin, India – 682 029

^dDivision of Solid Mechanics, Lund University, Lund Sweden

^eLund Institute of Advanced Neutron and X-ray Science, Lund Sweden

^fDepartment of Periodontology, Pushpagiri College Of Dental Sciences, Thiruvalla, Kerala, India

Correspondence to:

*Aji P Mathew

E-mail and phone: aji.mathew@mmk.su.se; +46 8161256

Address: Department of Materials and Environmental Chemistry, Stockholm University,

Frescativägen 8, 106 91, Stockholm, Sweden

Figure S1. Disc-shapes models for ion adsorption study a) PLA, b) HAp/PLA, c) SEM porosity structure measurement

Figure S2. Thermal stability of the PLA and PLA/HAp 3D printing filaments

Figure S3 Elemental composition using XPS data.

Figure S4 Characterization of Pb adsorbed into HAp/PLA using a) SEM image, b) EDX mapping and c) elemental mapping.

Figure S5 Characterization of Cd adsorbed into HAp/PLA using a) SEM image, b) EDX mapping and c) elemental mapping.