Electronic Supplementary Information (ESI)

Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications

Chan Yang Jeong^{a,b}, Takashi Kubota^b, and Kazuki Tajima^{b,*}

^aKitami Institute of Technology (KIT), 165 Koen-cho, Kitami, Hokkaido 090-8507,

Japan

^bNational Institute of Advanced Industrial Science and Technology (AIST), 1-1-1

Higashi, Tsukuba, Ibaraki 305-8565, Japan

*Corresponding author: <u>k-tajima@aist.go.jp</u>

Table S1 Properties of the PB- and WO₃-NP dispersible inks with varying PVA

	PB-10 wt%. PVA ink	WO ₃ -1 wt%. PVA ink
Surface tension (mN/m)	45.1	52.3
Viscosity (cP)	19.4	7.3
Density (g/cm ³)	1.08	4.07
pH	6.7	4.9
Contact angle (°) (before UV treatment)	93.6	48.8
Contact angle (°) (after UV treatment)	48.8	46.4

contents of 10 and 1 wt.%, respectively.

Table S2 Spin-coating conditions for the preparation of 1 μ m-thick WO₃ and PB thin

Viscosity (cP)	Revolution (rpm)	Time (s)	
1–10	300	600 s	-
10–14	360	600 s	
14–17	400	600 s	
17.05	500	10 s	
17–35	1000	10 s	

films.

Substrate	Sample	substrate area (cm ²)	substrate before spin coating (g)	substrate after spin coating (g) (evaporated suspension)	Amount of coated (g)	Estimated film thickness (µm)
ITO/PET	WO ₃	25	0.3722	0.3823	0.0101	1.24
	PB	25	0.3740	0.3770	0.0031	1.11
ITO/glass	WO ₃	25	4.4302	4.4394	0.0092	1.13
	PB	25	4.3854	4.3882	0.0028	1.04

Table S3 Estimated thicknesses of the WO_3 and PB thin films.

Table S4 Details of the haze and chromaticity of PET-based and glass-based ECDs in

Substrate	colour states	Estimate colour	Haze	L*	a*	b*
PET	Coloured		3.61	47.67	-18.28	-38.89
	Transparent		2.93	91.35	-2.63	3.6
Glass	Coloured		3.06	41.99	-15.51	-42.96
	Transparent		4.19	88.94	-7.58	1.65

the coloured and transparent states.

Table S5 Transmittance (T), optical density (OD), coloration efficiency (CE), and optical switching time at a wavelength of 633 nm for ECDs fabricated under different

 $T_{
m colored}$ Wavelength Substrate ECD area T_{bleached} Charge Current density A_{bleached} $A_{\rm colored}$ Optical density CE (nm) (cm^2) (%) (%) (C) (C/cm^2) (ΔOD) (cm^2/C) PET 0.10 633 16 79.89 1.31 0.23 0.01 1.88 1.78 123.32 Glass 16 80.00 0.32 0.44 0.03 0.10 2.50 2.40 86.44

light aging conditions in their colored and bleached states.

Figure S1 The in situ optical density change with respect to the charge density of PET-

based and glass-based ECDs.