A novel Au/electroactive ploy(amic acid) composite as an effective catalyst of p-nitrophenol reduction

Guan-Hui Lai^a, Tsao-Cheng Huang^b, Bi-Sheng Huang^a, and Yi-Chen Chou^{*a}

^a Department of Cosmetic Science, Providence University, 43301 Taichung, Taiwan.

^b Department of Chemistry, Chung Yuan Christian University, 32023 Chung Li, Taiwan

Fig. S1. LC-Mass of EPAA oligomer.

¹H NMR (d₆-DMSO): δ =12.58 (br, 2H, due to carboxylic acid), δ = 10.23-10.21 (m, 2H, due to sec amide), δ =8.05-6.86 (2H, due to sec amine), δ =7.975 (dd, 2H, *J*=8, 4Hz, due to H2, H2'), δ =7.66-7.43 (m, 6H, due to Ar), δ = 7.22-7.20 (m, 14H, due to Ar), δ =6.81-6.75 (m, 2H, due to Ar)

Fig. S2. ¹H NMR of EPAA oligomer.

¹H NMR (d₆-DMSO): δ =10.49 (br, 1H, due to carboxylic acid), δ =10.33 (br, 1H, due to carboxylic acid), δ = 10.22-10.13 (m, 2H, due to sec amide), δ =8.05-6.86 (28H, due to Ar)

Fig. S3. ¹H NMR of EPAA.

Fig. S4. (a) TEM image of Au nanoparticles and (b) the particle size distribution of the Au nanoparticles.