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AEMD method
In the AEMD method, the two sub-regions are initially equilibrated with periodic boundary condition at different temperatures
(T1 > T2),

T (z) =

{
T1 for 0 < z ≤ Lz/2
T2 for Lz/2 < z ≤ Lz

where Lz is the length of the system in z-direction. Then, the temperature difference can be expanded by using exponential
function as follows [1],

∆T (t) = 〈T1(t)〉 − 〈T2(t)〉 =

∞∑
n=1

Cne−α
2
n κ̄t (S1)

where 〈T1(t)〉 and 〈T2(t)〉 are the average temperatures of sub-regions 1 and 2 above time t, αn = 2πn/Lz, and κ̄ is the fitting
parameter. The expansion coefficients Cn can be written as follows,
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Then, the equation S1 can be expanded as follows,
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Note that the even number terms are zero and thus removed from the expansion. For the sake of simplicity, the fitting
parameter τ0 is introduced instead of κ̄ using the following relation,(

2π
Lz

)2

κ̄ =
1
τ0
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Then, the above equation can be written as follows,

∆T (t) =
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Note that n = 5 can give the sufficient accurate fitting result. Then, the thermal conductivity κ can be determined by using the
following equation,

κ = κ̄ · ρCV =
Lz

(2π)2

ρCV

τ0
(S6)

where ρ is the density and CV is the volumetric heat capacity.
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Mechanical properties from elastic constants
The lower limits of bulk and shear moduli within the Voigt approximation can be calculated using the stiffness elast constants
as follows,

BV = [C11 + C22 + C33 + 2(C12 + C13 + C23)] /9 (S7)
GV = [C11 + C22 + C33 + 3(C44 + C55 + C66) − (C12 + C13 + C23)] /15 (S8)

The upper limits of bulk and shear moduli can be calculated within the Reuss approximation as follows,

BR = [S 11 + S 22 + S 33 + 2(S 12 + S 13 + S 23)]−1 (S9)

GR = 15[4(S 11 + S 22 + S 33 − S 12 − S 13 − S 23) + 3(S 44 + S 55 + S 66)]−1 (S10)

Mechanical stability of a polycrystalline solid can be assessed by calculating the elastic constants and elastic moduli such
as bulk modulus (B), shear modulus (G) and Young’s modulus (E). According to the Voigt-Reuss-Hill approximation, the
bulk and shear moduli of a polycrystalline solid can be determined as follows,

B =
BV + BR

2
, G =

GV + GR

2
(S11)

where BV and GV (BR and GR) are the upper (lower) limits of the polycrystalline bulk and shear moduli within the Voigt
(Reuss) approximation. These moduli can be estimated by using the elastic stiffness and compliance tensors that can be
readily obtained from MD simulation. From these moduli, the Young’s modulus E and Poisson ratio ν are estimated as
follows,

E =
9GB

3B + G
, ν =

3B − 2G
6B + 2G

(S12)

Given these elastic properties, one can estimate the sound speed, which is closely connected with the thermal properties. The
transverse (vt) and longitudinal (vl) sound velocities are given as follows,

vt =

√
G
ρ
, vl =

√
3B + 4G

3ρ
(S13)

Finally, the average sound velocity is estimated using these transverse and longitudinal sound velocities as follows,
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Table S1. Parameters for Buckingham potential
A (eV) ρ (Å) C (Å6)

I-I 989.0255841 0.482217 30.24133
Pb-I 4490.799934 0.321737 0.0
Pb-Pb 3052986.18284579 0.131258 0.0
Pb-C 1418468.50893 0.1507947 0.0
Pb-N 1418468.50893 0.1507947 0.0
I-C 4900.4361 0.342426 0.0
I-N 4900.4361 0.342426 0.0

Table S2. Parameters for L-J potential
A (eV) ρ (Å)

Pb-h+ 0.000607 2.26454
Pb-hc 0.000607 2.70999
I-h+ 0.00249 2.75
I-h+ 0.00249 3.10
N-C 0.00592 3.3248
C-C 0.004747 3.3997
N-N 0.0073765 3.25
N-h+ 0.0022432 2.15950
N-hc 0.0022432 2.6050
h+-h+ 0.0006812 1.0691
h+-hc 0.0006812 1.5145
hc-hc 0.0006812 1.9600
h+-C 0.0017964 2.2344
hc-C 0.0017964 2.6798

”h+” and ”hc” denote hydrogen connected to N and C atoms.

Table S3. Parameters of bond potential
αi (eV/Å2) ri,equ (Å)

N-h+ 32.021353 1.033
C-hc 29.391957 1.091
C-N 25.478237 1.499

Table S4. Parameters for angle potential
βi (eV/rad2) θi,equ (deg)

h+-N-h+ 3.51454 108.11
C-N-h+ 4.00918 110.11
N-C-hc 4.25216 107.91
hc-C-hc 3.38437 110.74

Table S5. The parameters of dihedral potential
K (eV) N d (deg) Weighting factor

hc-C-N-h+ 0.006751 3 0 0.0
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Table S6. Masses and electric charges for various atoms
mi (g/mol) qi (e)

h+ 1.008 0.54
hc 1.008 0.023
N 14.01 −1.1
C 12.01 0.771
Pb 207.2 2.03
I 126.9 −1.13

Table S7. Lattice parameters and elastic properties of bulk modulus B, shear modu-
lus G, Young’s modulus E and Poisson’s ratio ν for MAPbI3 with tetragonal struc-
ture at 300 K, together with the previous DFT calculation and available experimental
data.

a (Å) b (Å) c (Å) B (GPa) G (GPa) E (GPa) ν

This work 8.771 8.791 12.946 18.9 5.9 16.0 0.36
DFT [2] 8.800 8.800 - 12.2 3.7 12.8 0.33
Exp [3] 8.849 8.849 12.642 13.9 5.4 14.0∼14.3 0.33
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Figure S1. Ball-and-stick view for 5 × 5 × 5 supercells in tetragonal phase of MAPbI3.
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Figure S2. Ball-and-stick view for supercells with box lengths of Lx = Ly ' 2.6 nm and Lz ' 51 nm for AEMD simulations.
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Figure S3. Total energy of the system containing 64800 atoms vs. temperature. Heat capacity CV is calculated by evaluating
CV = dEtot

dT

∣∣∣
V through calculation of the total energies at different temperatures and linear fitting.
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