Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Mesoporous MnFe₂O₄ magnetic nanoparticles as peroxidase

mimic for colorimetric detection of urine glucose

Ke Liu[†], Jiaxing Su[†], Jiangong Liang, Yuan Wu^{*} State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China [†] These authors contribute equally to this work. Corresponding Author: Tel.: +86-2787288505

E-mail: yuanwu@mail.hzau.edu.cn (Yuan Wu)

Fig. S1 Size distribution of DLS result for $mMnFe_2O_4$ MNPs.

Fig. S2 EDS result for mMnFe₂O₄ MNPs.

Fig. S3 XPS spectra of mMnFe₂O₄ MNPs: a) Fe 2p spectrum; b) Mn 2p spectrum; c) O 1s spectrum; d) C 1s spectrum. For the spectrum of Fe 2p, the peaks at 710.2 eV and 724.0 eV are attributed to Fe $2p_{3/2}$ and Fe $2p_{1/2}$, respectively, indicating the presence of Fe³⁺. For the spectrum of Mn 2p (Fig. S4c), the peaks of Mn $2p_{3/2}$ and Mn $2p_{1/2}$ of binding energy are observed at 641.6

eV and 653.1 eV, indicating that Mn exists in the style of Mn^{2+} . For the spectrum of O 1s (Fig.S4d), the peak at 529.8 eV relates to the oxygen in the form of O²⁻ in the nanocrystals. Form the fixed peak for the C 1s spectrum, the peaks at 288.2 eV, 284.8 eV and 284.1 eV are attributed to C 1s of C=O, C-O and C-C, which may be from organic molecules groups or CO₂ molecules.

Fig. S4 FT-IR result of mMnFe₂O₄ MNPs. The strong band around 580 cm⁻¹ corresponds to the metal-oxygen stretching vibration bonds (Fe-O/Mn-O) in the nanomaterials.

Fig. S5 XRD result for mMnFe₂O₄ MNPs.

Fig. S6 a) N_2 adsorption-desorption result of mMnFe₂O₄ MNPs; b) HK pore size distribution curve of mMnFe₂O₄ MNPs.

Fig. S7 Field dependent magnetization result of mMnFe₂O₄ MNPs.

Fig. S8 Peroxidase-like activity of mMnFe₂O₄ MNPs (black line) and mMnFe₂O₄ MNPs incubated supernatant buffer (red line).

It is important to prove that the observed peroxidase-like activity was caused by $mMnFe_2O_4 MNPs$ rather than leached ions from $mMnFe_2O_4 MNPs$ in acidic solution. $mMnFe_2O_4 MNPs$ were incubated in the reaction buffer (pH 4.0) for 2 h, and then catalytic assay was performed with supernatant solution by removing $mMnFe_2O_4 MNPs$ with a magnet. As shown in Figure S8, no activity was observed with supernatant solution, confirming that the catalytic activity comes from the intact $mMnFe_2O_4 MNPs$.

Fig. S9 Optimization of experimental parameters. a) pH optimization of mMnFe₂O₄ MNPs with TMB and H₂O₂ using absorbance at 652 nm; b) Incubation temperature optimization of mMnFe₂O₄ MNPs with TMB and H₂O₂ using absorbance at 652 nm; c) Optimization of H₂O₂ concentration; d) Optimization of TMB concentration; e) Optimization of mMnFe₂O₄ MNPs concentration; f) Reaction time optimization of mMnFe₂O₄ MNPs with TMB and H₂O₂ using absorbance at 652 nm.

The explanation for Fig. 3d:

To evidence the \cdot OH radical mechanism, fluorescence test of terephthalic acid (TA) were performed to detect \cdot OH during the catalytic reaction, since TA can react with \cdot OH to generate highly fluorescent 2-hydroxy terephthalic acid. Fig. 3d shows that the fluorescence intensity of TA at 435 nm significantly increased after adding mMnFe₂O₄ MNPs, whereas no fluorescence intensity was observed in the absence of H₂O₂ or mMnFe₂O₄ MNPs. These results demonstrate the catalytic mechanism of nanozymes is to bind and react with H₂O₂ and then release hydroxyl radical (\cdot OH) to react with TMB.

Fig. S10 SEM image of mMnFe₂O₄ MNPs kept in pH 4.0 for 2 h.

Fig. S11 Enzymatic-like reaction activity of mMnFe₂O₄ MNPs treated with different concentration of NaCl.

Fig. S12 UV-vis spectra of diluted urine samples from healthy body and diabetes. Inset: Images of colored production for urine samples. (1) healthy body and (2) diabetes.

Catalysts	<i>K</i> _m (mM ⁻¹)	V _{max} (10 ⁻⁸ M S ⁻¹)	Ref.
mMnFe ₂ O ₄ MNPs	0.07	27.8	This work
HRP	0.43	9.6	[1]
Hemin	0.75	6.2	[2]
Fe ₃ O ₄ MNPs	0.10	3.4	[1]
MoS ₂ /GO	0.10	33.4	[3]
FePt	0.121	21.1	[4]
ZnFe ₂ O ₄	0.85	13.3	[5]
Co ₃ O ₄	0.037	6.27	[6]
PtPd-Fe ₃ O ₄	0.079	9.36	[7]

Table S1. Comparison of the kinetic parameters^a of $mMnFe_2O_4$ MNPs nanozyme with other reported catalysts. TMB was the substrate.

^a The concentration of mMnFe₂O₄ MNPs was 10 μ g mL⁻¹, H₂O₂ concentration was 20 mM.

Table S2. Comparison of other nanozyme probes for glucose analysis.

1	J 1 U	5	
Nanozyme probes	Linear range	LOD	Ref.
mMnFe ₂ O ₄ MNPs	0.5-16 μM	0.7 μΜ	This work
Fe ₃ O ₄ MNPs	50-1000 μM	30 µM	[8]
Wse ₂ nanosheets	10-60 μM	10 µM	[9]
Cu _{0.89} Zn _{0.11} O	25-500 μM	1.5 μM	[10]
Nanosized CuS	0.5-110 μM	0.13 µM	[11]
SO4 ²⁻ /CoFe2O4	0-300 µM	6.4 μM	[12]
CoFe ₂ O ₄	0.1-10 μΜ	0.024 µM	[13]
ZnFe ₂ O ₄	1.25-18.75 μM	0.3 μΜ	[5]
ZnO-ZnFe ₂ O ₄	1-23 µM	0.4 µM	[14]

Added	Total found	Recovery (%)	RSD (%)
(µM)	(µM)	n = 3	n = 3
1	0.93	93.4	4.5
10	10.65	106.5	7.4

Table S3 Determination of glucose in urine from health body (n = 3) with the mMnFe₂O₄ MNPs nanozyme probes.

References

- [1] L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang,
- S. Perrett, and X. Y. Yan, Nat. Nanotechnol., 2007, 2, 577-583.
- [2] X. C. Lv and J. Weng, Sci. Rep., 2013, 3, 3285-3294.
- [3] J. Peng and J. Weng, Biosens. Bioelectron., 2017, 89, 652–658.
- [4] Y. Liu, D. L. Purich, C. C. Wu, Y. Wu, T. Chen, C. Cui, L. Q. Zhang, S. Cansiz, W. J. Hou, Y.
- Y. Wang, S. Y. Yang, and W. H, Tan, J. Am. Chem. Soc., 2015, 137, 14952-14958.
- [5] L. Su, J. Feng, X. M. Zhou, C. L. Ren, H. H. Li, and X. G. Chen, *Anal. Chem.*, 2012, 84, 5753-5758.
- [6] J. Mu, Y.Wang, M. Zhao, L.Zhang, Chem. Commun., 2012, 48, 2540–2542.
- [7] X. L. Sun, S. J. Guo, C. S. Chung, W. L. Zhu, and S. H. Sun, Adv. Mater., 2013, 25, 132–136.
- [8] H. Wei, and E.K. Wang, Anal. Chem., 2008, 80, 2250-2254.
- [9] T.M. Chen, X.J. Wu, J.X. Wang, and G.W. Yang, *Nanoscale*, 2017, 9, 11806-11813.
- [10] A.P. Nagvenkar and A. Gedanken, ACS Appl. Mater. Interfaces, 2016, 8, 22301-22308.
- [11] X. H. Niu, Y. F. He, J. M. Pan, X. Li, F. X. Qiu, Y. S. Yan, L. B. Shi, H. L. Zhao, and M. B. Lan, *Anal. Chim. Acta*, 2016, **947**, 42-49.
- [12] X. L. Yin, P. Liu, X. C. Xu, J. M. Pan, X. Li, X. H. Niu, Sens. Actuator B Chem., 2021, 328, 129033-123041.
- [13] W. B. Shi, X. D. Zhang, S. H. He, and Y. M. Huang, Chem. Commun., 2011, 47, 10785-10787.
- [14] M. G. Zhao, J. Y. Huang, Y. Zhou, X. H. Pan, H. P. He, Z. Z. Ye, and X. Q. Pan, Chem. Commun., 2013, 49, 7656–7658.