Electronic Supplementary Information (ESI)

Cellulose Citrate: a Convenient and Reusable Bio-adsorbent for Effective Removal of Methylene Blue Dye from Artificially Contaminated Water

Fabrizio Olivito,^{*1} Vincenzo Algieri,^{*1} Antonio Jiritano,¹ Matteo Antonio Tallarida,¹ Antonio Tursi,² Paola Costanzo,¹ Loredana Maiuolo¹ and Antonio De Nino^{*1}

Corresponding authors email addresses

fabrizio.olivito@unical.it, vincenzo.algieri@unical.it, denino@unical.it

Adsorption kinetics	2
Adsorption isotherms	3
Equations	4

Adsorption kinetics

Fig. S1 Pseudo first order and Elovich model plots

Adsorption isotherms

Fig. S2 Freundlich and Temkin isotherms plots

Equations

Different equations used in the study:

ъ

Pseudo – first order equation:
$$ln(q_e - q_t) = lnq_e - k_1 t$$
 (1)
Pseudo – second order equation: $t/q_t = 1/k_2q_e^2 + (1/q_e)t$ (2)

Elovich equation:
$$q_t = \frac{1}{\beta} ln(\alpha\beta) + \frac{1}{\beta} lnt$$
 (3)

Where, q_e and q_t are the amounts of dye adsorbed on cellulose-citrate (mg/g) at equilibrium and at time t. k_1 (min⁻¹) and k_2 (g/mg/min) are the pseudo-first order rate constant and the pseudo-second-order rate constant. α (mg g⁻¹ min⁻ ¹) is the initial adsorption rate and β (g mg⁻¹) is the relationship between the degree of surface coverage and the activation energy involved in the chemisorption.

van't Hoff equation:
$$lnK_c = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT}$$
 (4)

where, ΔS° , ΔH° and R represent entropy change, enthalpy change and the universal gas constant (8.314 J/mol K) respectively. T (K) is the absolute temperature and $K_c(L/g)$ is the standard thermodynamic equilibrium constant, which is expressed by

$$K_c = \frac{q_e}{C_e} \tag{5}$$

where, q_e is the amount of adsorbed MB dye per unit mass of adsorbent at equilibrium (mg/g) and C_e is the equilibrium aqueous concentration of MB.

Further, the value of the Gibbs free energy change ΔG° (J/mol) is calculated as:

$$\Delta G^o = -RT ln K_c \tag{6}$$

The negative value of ΔG° indicates the spontaneity of a chemical reaction.

Langmuir isotherm:
$$\frac{C_e}{q_e} = \frac{1}{k_L q_m} + \frac{1}{q_m} C_e$$
 (7)
Freundlich isotherm: $lnq_e = lnk_F + \frac{1}{n}lnC_e$ (8)
Tempkin isotherm: $q_e = \beta lnk_T + \beta lnC_e$ [where, $\beta = RT/b$] (9)

where the Langmuir constants q_m and k_l represent the maximum adsorption capacity of the adsorbent and the constant energy related to the heat of adsorption, while Ce (mg/L) is the concentration of adsorbate in the liquid phase at equilibrium and q_e (mg/g) is the amount of adsorbate adsorbed on the solid phase at equilibrium. k_F (mg/g) (L/mg)^{1/n} indicates the adsorption capacity, and n reflects the intensity of adsorption according to the Freundlich theory. The constant β (L/mg) is related to the heat of adsorption, k_T (mg/L) is a constant of the Tempkin isotherm, b (J/mol) is the energy constant of the Tempkin isotherm, R (8.314 J/K mol) is the gas constant and T (K) is the absolute temperature.

One of the essential characteristics of the Langmuir isotherm can be expressed by a dimensionless constant, separation factor, R_L , defined as follows:

$$R_L = \frac{1}{1 + k_L C_0}$$
(12)

The value of R_L indicates the type of the isotherm; which is unfavourable ($R_L > 1$), linear ($R_L = 1$), favourable ($0 < R_L < 1$) or irreversible ($R_L = 0$). ¹

In Table S1 $R_{\rm L}$ values for each used concentration are reported:

Co	RL
10	0.31
20	0.18
30	0.13
40	0.10
50	0.08
70	0.06
100	0.04
120	0.04
150	0.03

Table S1. Values of RL at different concentrations

References

¹ Kumari, S., Chauhan, G. S., Ahn, J.-H. Chem. Eng. 2016, **304**, 728.