Supporting Information

A dual polymer composite of poly(3-hexylthiophene) and Poly(3,4-ethylenedioxythiophene) hybrid surface heterojunction with $g-C_3N_4$ for enhanced photocatalytic hydrogen evolution

Hailian Bao,^a Xiaodi Chen,^a Rui Yuan,^a Chao Zhang*^a and Shiai Xu*^{a,b}

a. School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China. E-mail: zhangchaoqhu@126.com

b. Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. E-mail: saxu@ecust.edu.cn

Fig. S1 Typical TEM images of pure $g-C_3N_4$.

Fig. S2 Typical TEM images of g-C₃N₄-PEDOT/P3HT.

Fig. S3 Typical high resolution TEM (HRTEM) images of the sample, (a) g-C₃N₄, (b) g-C₃N₄-PEDOT/P3HT.

Fig. S4 UV-Vis diffuse reflectance spectra of the as-prepared g-C₃N₄-polymer samples.

Fig. S5 The ordinary optical photos of the as-prepared g-C₃N₄-polymer samples.

Fig. S6 The XPS spectra of C 1s, N 1s, O 1s and Pt 4f for g-C₃N₄-PEDOT/P3HT/Pt composite before and after stability test in AA solution.

Fig. S7 The molecular structure of monolayer g-C₃N₄, the repeat unit chain of PEDOT, P3HT and the composites.

Photocatalyst	Reaction conditions	Wavelength of incident light(λ)	H ₂ production activity	AQY/%	Ref.
P3HT-g-C ₃ N ₄ (melamine)	0.25M Na ₂ S-Na ₂ SO ₃	λ≥400 nm	560 μmol h ⁻¹	2.9% (λ= 420 nm)	S1
g-C ₃ N ₄ /Au/P3HT/Pt	10% TEOA	λ≥420 nm	$320 \ \mu mol \ h^{-1}$	none	S2
P3HT-g-C ₃ N ₄ (urea)	0.25M Na ₂ S-Na ₂ SO ₃	λ≥420 nm	57 µmol h ⁻¹	4.2% (λ= 420 nm)	S3
g-C ₃ N ₄ -P3HT (RCNTP-5)	10% TEOA	λ>420 nm	609.9 µmol h ⁻¹ g ⁻¹	none	S4
g-C ₃ N ₄ -PEDOT	10% TEOA	λ≥400 nm	$32.7 \ \mu mol \ h^{-1}$	none	S5
g-C ₃ N ₄ -PEDOT/P3HT	saturated AA solution	λ≥400 nm	427703.3µmol∙h ⁻ ¹·g ⁻¹	4.4%(λ=420 nm), 10.6%(λ=520 nm), 14.9%(λ=600 nm)	This work

Table S1. The comparison of other polymer dye-sensitized g-C₃N₄ for photocatalytic H₂ production.

References

S1. H. J. Yan and Y. Huang, Chem. Commun., 2011, 47, 4168–4170.

S2. Y. Zhang, F. Mao, H. Yan, K. Liu, H. Cao, J. Wu, D. A. Xiao, J. Mater. Chem. A, 2015, 3, 109-115.

S3. X. Zhang, B. Peng, S. Zhang, & T. Peng, ACS Sustainable Chem. Eng., 2015, 3, 7, 1501–1509.

S4. M. Luo, H. Gong, W. Yang, F. He, Y. Cao, & Y. Zhang, et al., Int. J. Hydrogen Energ., 2019, 44, 7108-7117.

S5. X. Zheng, Z. Chen, Z. Xu, L. Wang, Chem. Commun., 2014, 50, 6762-6764.