Supplementary information for

Eco-benign PVA/aluminum phosphate adhesives as formaldehyde alternative in wood-based panel

Zhenzeng Wu,^{a,*} Tingjie Chen, ^b John Tosin Aladejana, ^c Zhutao Zhang, ^a Shengwei

Liang,^a Yuanjiao Xiao,^a Jiahui Lin, ^a Xiaodong(Alice) Wang, ^d and Yongqun Xie ^{c, *}

^a The College of Ecology and Resource Engineering, Wuyi University, No. 16, Wuyi Avenue, Wuyishan City, Fujian 354300, P.R. China

^b The College of Materials Science and Engineering, Fujian University of Technology,

Fuzhou, Fujian 350002, P.R. China

^c The College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, P.R. China

^d The Department of Wood and Forest Sciences, Laval University, Quebec G1V 0A6, Canada

Figure S1. Digital images of AP, PAP-1%, PAP-2% and PAP-3%

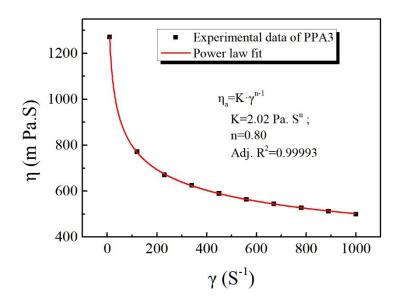
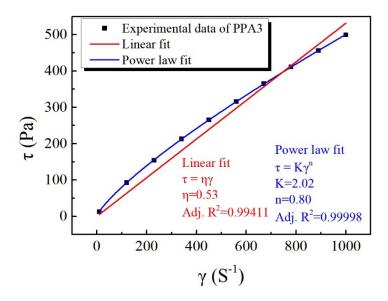
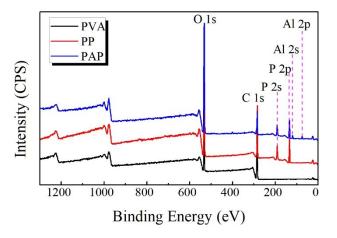




Figure S2. Experimental data and Power law fit of PAP-3 in viscosity versus velocity

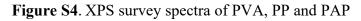

gradient

Figure S3. Experimental data and different fit modes of PAP-3 in shearing stress

versus velocity gradient

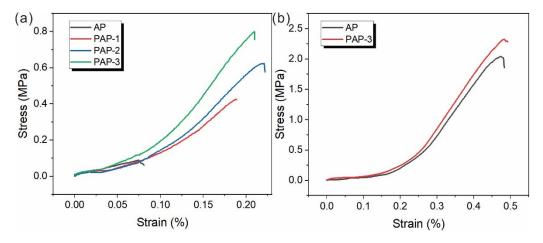


Figure S5. Stress vs strain curves of AP and PAP: (a) wet and (b) dry bonding strength tests

Figure S6. Contact angle tests of AP and PAP

Viscosity	AP	PAP-1%	PAP-2%
η (Pa)	0.02	0.05	0.20
Adj. R ²	0.999987	0.999997	0.99982

Table S1. The viscosity value obtained by linear fitting from Figure 3(b)

Table S2. Details of linear and power law fit of PAP-3

	Linea	ar fit			Power 1	aw fit	
Equation	Adj. R2	а	b	Equation	Adj. R2	а	b
Y=a+b*x	0.99172	35.94	0.48027	Y=a*xb	0.99998	2.06	0.7951

Table S3. Viscosity at Room Temperature (η_{RT}) and the Maximum Viscosity

Sample	AP	PAP-1	PAP-2	PAP-3
ηRT (m Pa∙S)	31.3	320.0	347.1	791.6
ηmax (m Pa·S)	1445	919615	679990	455422
Tmax (°C)	163.5	166.2	176.8	185.6

at $T_{\text{max}}(\eta_{\text{max}})$ of AP, PAP-1, PAP-2 and PAP-3.

Table S4. Onset temperature (OT), peak temperature of thermal decomposition (PT),

Sample	OT (°C)	PT1 (°C)	PT2 (°C)	PT3 (°C)	RW (%)
AP	121	148	158	171	65.25%

and the residual weight (RW) of different AP adhesives

PAP-1%	116	133	153	193	65.13%
PAP-2%	120	145	160	193	67.62%
PAP-3%	129	154	177	227	68.32%

Table S5. Onset temperature (OT), peak temperature of thermal decomposition (PT),

Sample	OT (°C)	PT1 (°C)	PT2 (°C)	RW (%)
W	303.8	340.2	502.2	4.85%
PVA	210.0	321.4	417.9	2.72%
APW	267.5	301.7	516.6	10.52%
PAPW	287.4	287.4	542.0	18.89%

and the residual weight (RW) of W, PVA and wood-based samples