Electronic Supplementary Information (ESI)

Low content Ru-incorporated Pd nanowires for

bifunctional electrocatalysis

Yongdeog Kweon, Sunguk Noh, and Jun Ho Shim*

Department of Chemistry and Institute of Basic Science, Daegu University, Gyeongsan 38453,

Republic of Korea

*E-mail: junhoshim@daegu.ac.kr

Figure S1. TEM/EDS analysis of the nRuPd/C sample.

20 nm HV=100.0kV Direct Mag: 100000x AMT Camera System

Figure S2. TEM images of the nPtPd nanowires.

Figure S3. XRD patterns of the (111) reflection in nPd/C, nRuPd/C, and nPtPd/C.

Figure S4. RDE polarization curves of a series of nRuPd/C for (a) ORR and (b) HER at various Ru concentrations (0.5, 1.0, 5.0 mM).

	ORR (0.1 M KOH)		HER (1.0 M KOH)		
Catalysts	E _{1/2} [V]	E _{onset} [V]	η [mV, at -10 mA cm ⁻²]	Tafel slope [mV dec ⁻¹]	Refs
CoRu- O/A@HNC-2	0.821	0.937	85.0	72.5	S1
RuNi/CQDs	-	-	13.0	40.0	S2
Ru ₂ Ni ₂ SNs/C	-	-	40.0	23.0	S 3
Ru@NGT	0.830	0.970	60.0	81.0	S4
Ru ₂ P/RGO-20			13.0	56.0	S5
Ru-NC-700	-	-	12.0	14.0	S6
Ni@Ni ₂ P-Ru	-	-	31.0	41.0	S7
nRuPd/C	0.936	1.038	11.7	50.1	This work

Table S1. Comparison of the ORR/HER performance of Ru-based catalysts in alkaline medium.

References

- S1. G. Li, K. Zheng, W. Li, Y. He and C. Xu, Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting, ACS Appl. Mater. Interfaces, 2020, 12, 46, 51437– 51447.
- S2. Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang and S. Lu, A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots, *Angew. Chem. Int. Ed.*, 2020, **59**, 1718–1726.
- S3. J. Ding, Q. Shao, Y. Feng, X. Huang, Ruthenium-nickel sandwiched nanoplates for efficient water splitting electrocatalysis, *Nano Energy*, 2018, **47**, 1-7.
- S4. B. K. Barman, B. Sarkar, P. Ghosh, M. Ghosh, G. M. Rao and K. K. Nanda, In situ decoration of ultrafine Ru nanocrystals on N-doped graphene tube and their applications as oxygen reduction and hydrogen evolution catalyst, ACS Appl. Energy Mater., 2019, 2, 10, 7330-7339.
- S5. T,. Liu, S. Wnag, Q. Zhang, L. Chen, W. Hu and C. M. Li, Ultrasmall Ru₂P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media, *Chem. Commun.*, 2018, **54**, 3343-3346.
- S6. B. Lu, L. Guo, F. Wu, Y. Peng, J. E. Lu, T. J. Smart, N. Wang, Y. Z. Finfrock, D. Morris, P. Zhang, N. Li, P. Gao, Y. Ping and S. Chen, Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media, *Nat. Commun.*, 2019, 10, 631.
- S7. Y. Liu, S. Liu, Y. Wang, Q. Zhang, L. Gu, S. Zhao, D. Xu, Y. Li, J. Bao and Z. Dai, Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance, *J. Am. Chem. Soc.*, 2018, 140, 2731-2734.