Supporting Information

Palladium-catalyzed bisthiolation of terminal alkynes for the

assembly of diverse (Z)-1,2-bis(arylthio)alkene derivatives

Yin-Long Lai,*a Shaoxi Yan,* Dan He,b+ Li-Zhen Zhou, Zi-Shen Chen, Yu-Long Du and

Jianxiao Li*^{b, c}

^a College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512005, China.

E-mail: chemlaiyinlong@163.com

^b Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and

Chemical Engineering, South China University of Technology, Guangzhou 510640, China

E-mail: cejxli@scut.edu.cn

^c Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of

Technology, Guangzhou 510640, China

Table of Contents

Materials and methods	S2
Characterization data for all products	S3
NMR Spectra for the compounds 3	S17
NMR Spectra for the compounds 4	S36

Materials and methods

Melting points were measured using a melting point instrument and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a 400 MHz NMR spectrometer. The chemical shifts are referenced to signals at 7.24 and 77.0 ppm, respectively, and chloroform was used as a solvent with TMS as the internal standard. GC-MS data were obtained using electron ionization. HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). TLC was performed using commercially available 100–400 mesh silica gel plates (GF₂₅₄). Unless otherwise noted, purchased chemicals were used without further purification.

Typical procedure for the preparation of (Z)-1,2-bis(arylthio)alkenes

A mixture of IPr-Pd-Im-Cl₂ (0.650 mg, 0.5 mol %), ionic liquid [Bmim]PF₆ (2 mL), and H₂O₂ (2 equiv) were added to an Schlenk tube equipped with a stir-bar. A balloon filled with N₂ was connected to the Schlenk tube *via* the side tube and purged 3 times. Then, alkyes (1, 0.2 mmol), and arylhydrazines (2, 0.48 mmol), and Na₂S₂O₃ (0.4 mmol) were quickly added to the tube under N₂ atmosphere and stirred at 120 °C for 12 h. After the reaction was finished, the N₂ gas was released carefully and the reaction was quenched by water and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl acetate) to afford the desired products **3** and **4**.

Characterization data for all products

(*Z*)-(1-Phenylethene-1,2-diyl)bis(phenylsulfane) (3a).^[1] Yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 7.0 Hz, 1H), 7.35 - 7.29 (m, 5H), 7.24 (dd, *J* = 10.4, 5.8 Hz, 3H), 7.14 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 136.7, 135.4, 134.8, 130.6, 129.5, 129.3, 128.9, 128.6, 128.3, 127.8, 127.6, 126.7, 125.9 ppm; v_{max}(KBr)/cm⁻¹ 3048, 2932, 1560, 1477, 1432, 734; MS (EI) m/z 77, 108, 178, 211, 277, 320; HRMS-ESI (m/z): calcd for C₂₀H₁₆NaS₂, [M+Na]⁺: 343.0586, found 343.0583.

(*Z*)-(1-(4-(*tert*-Butyl)phenyl)ethene-1,2-diyl)bis(phenylsulfane) (3b). ^[1] Yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, *J* = 8.4 Hz, 4H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.28 (m, 6H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.09 (t, *J* = 7.2 Hz, 1H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 136.6, 136.2, 135.5, 135.2, 130.4, 129.3, 129.1, 128.9, 127.9, 127.5, 126.4, 125.8, 125.5, 34.7, 31.3 ppm; v_{max} (KBr)/cm⁻¹ 3054, 2933, 1572, 1530, 1443, 1258, 742; MS (EI) m/z 108, 211, 251, 319, 376; HRMS-ESI (m/z): calcd for C₂₄H₂₄NaS₂, [M+Na]⁺: 399.1212, found 399.1207.

(*Z*)-(1-(3-Methoxyphenyl)ethene-1,2-diyl)bis(phenylsulfane) (3c). ^[2] Yield: 92%; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.8 Hz, 2H), 7.36 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 7.0 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 3H), 7.20 - 7.14 (m, 4H), 7.13 - 7.07 (m, 2H), 6.73 (d, *J* = 7.2, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 140.3, 136.7, 135.2, 134.7, 130.5, 129.4, 129.3, 129.0, 128.8, 128.3, 127.5, 126.2, 119.3, 113.1, 112.7, 55.2 ppm; v_{max}(KBr)/cm⁻¹ 3056, 2946, 1570, 1464, 1266, 753; MS (EI) m/z 77, 108, 226, 319, 350; HRMS-ESI (m/z): calcd for C₂₁H₁₈NaOS₂, [M+Na]⁺: 373.0691, found 373.0685.

(*Z*)-(1-(4-Fluorophenyl)ethene-1,2-diyl)bis(phenylsulfane) (3d).^[1] Yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.58 - 7.47 (m, 4H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.18 (m, 3H), 7.10 (t, *J* = 7.2 Hz, 1H), 6.93 (t, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 247.7 Hz), 136.2 (d, *J* = 1.4 Hz), 135.1, 135.0 (d, *J* = 3.2 Hz), 134.4, 130.6, 129.4, 128.8, 128.6, 128.5, 128.2, 127.8, 126.2, 115.4 (d, *J* = 21.8 Hz) ppm; v_{max}(KBr)/cm⁻¹ 3055, 2933, 1564, 1512, 1439, 746; MS (EI) m/z 77, 109, 229, 338; HRMS-ESI (m/z): calcd for C₂₀H₁₅FNaS₂, [M+Na]⁺: 361.0491, found 361.0487.

(*Z*)-(1-(4-Chlorophenyl)ethene-1,2-diyl)bis(phenylsulfane) (3e).^[2] Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (m, 3H), 7.39 - 7.30 (m, 5H), 7.25 - 7.16 (m, 6H), 7.14 - 7.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 137.2, 135.1, 134.2, 133.8, 133.6, 133.4, 130.7, 129.4, 129.1, 128.7, 128.5, 128.0, 126.2 ppm; v_{max}(KBr)/cm⁻¹ 3046, 2933, 1562, 1516, 1438, 744; MS (EI) m/z 109, 210, 245, 354; HRMS-ESI (m/z): calcd for C₂₀H₁₅ClNaS₂, [M+Na]⁺: 377.0196, found 377.0192.

(*Z*)-4-(1,2-Bis(phenylthio)vinyl)-*N*, *N*-dimethylaniline (3f).^[2] Yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, *J* = 7.0 Hz, 4H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 3H), 7.18 (t, *J* = 7.2 Hz, 2H), 7.11 - 7.05 (m, 2H), 6.60 (d, *J* = 8.0 Hz, 2H), 2.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 136.1, 135.5, 131.7, 130.2, 130.0, 129.2, 128.8, 128.0, 127.8, 127.1, 126.8, 125.6, 112.2, 40.4 ppm; v_{max}(KBr)/cm⁻¹ 3052, 2936, 1556, 1504, 1443, 1256, 747; MS (EI) m/z 109, 144, 210, 254, 327, 363; HRMS-ESI (m/z): calcd for C₂₂H₂₁NNaS₂, [M+Na]⁺: 386.1008, found 386.1005.

(*Z*)-1-(4-(1,2-Bis(phenylthio)vinyl)phenyl)ethan-1-one (3g).^[2] Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.48 - 7.37 (m, 4H), 7.29 (d, *J* = 4.8 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 7.2 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 143.0, 140.2, 135.8, 134.6, 134.2, 130.8, 129.4, 129.1, 128.7, 128.4, 128.0, 127.9, 126.6, 126.2, 26.6 ppm; v_{max}(KBr)/cm⁻¹ 3044, 2932, 1690, 1566, 1472, 1416, 1264, 748; MS (EI) m/z 86, 117, 207, 321, 362; HRMS-ESI (m/z): calcd for C₂₂H₁₉OS₂, [M+H]⁺: 363.0872, found 363.0866.

(*Z*)-4-(1,2-Bis(phenylthio)vinyl)benzonitrile (3h).^[2] Yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.4 Hz, 1H), 7.52 (t, *J* = 6.8 Hz, 4H), 7.43 - 7.35 (m, 5H), 7.25 - 7.17 (m, 2H), 7.15 (t, *J* = 7.2 Hz, 1H), 6.72 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 143.2, 141.3, 132.2, 132.1, 131.4, 131.1, 129.7, 129.5, 129.1, 128.3, 127.1, 118.0, 114.3, 108.0 ppm; v_{max} (KBr)/cm⁻¹ 3049, 2940, 2223, 1556, 1436, 1414, 744; MS (EI) m/z 103, 133, 207, 281, 345; HRMS-ESI (m/z): calcd for C₂₁H₁₆NS₂, [M+H]⁺: 346.0719, found 346.0714.

(*Z*)-(1-(Naphthalen-1-yl)ethene-1,2-diyl)bis(phenylsulfane) (3i). Yield: 86%; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.82 - 7.74 (m, 2H), 7.72 (d, *J* = 10.2 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.43 (m, 3H), 7.36 (d, *J* = 8.2 Hz, 3H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 136.3, 135.2, 134.7, 133.4, 132.7, 130.6, 130.0, 129.5, 129.3, 129.0, 128.4, 128.2, 127.8, 127.6, 126.4, 126.1, 126.1, 126.0, 124.6 ppm; v_{max} (KBr)/cm⁻¹ 3048, 2934, 1622, 1566, 1472, 1429, 745; MS (EI) m/z 109, 228, 261, 325, 370; HRMS-ESI (m/z): calcd for C₂₄H₁₈NaS₂, [M+Na]⁺: 393.0742, found 393.0738.

(*Z*)-2-(1,2-Bis(phenylthio)vinyl)thiophene (3j). Yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.2 Hz, 2H), 7.43 - 7.34 (m, 3H), 7.30 (t, *J* = 8.2 Hz, 4H), 7.25 - 7.18 (m, 4H), 7.12 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 136.2, 135.2, 134.8, 130.6, 129.3, 129.0, 127.8, 127.5, 126.1, 125.8, 125.6, 124.2, 122.2 ppm; v_{max}(KBr)/cm⁻¹ 3040, 2933, 1626, 1566, 1472, 1416, 754; MS (EI) m/z 65, 109, 217, 260, 326; HRMS-ESI (m/z): calcd for C₁₈H₁₄NaS₃, [M+Na]⁺: 349.0150, found 349.0144.

(*Z*)-4-(1,2-Bis(phenylthio)vinyl)pyridine (3k). Yield: 65%; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.42 (d, *J* = 4.8 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.35 (d, *J* = 7.2 Hz, 1H), 7.30 (s, 1H), 7.24 (d, *J* = 7.0 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 2H), 7.18 - 7.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 147.7, 138.3, 134.6, 134.0, 133.6, 130.7, 129.3, 129.2, 129.1, 128.9, 127.8, 126.6, 126.2, 123.1 ppm; v_{max} (KBr)/cm⁻¹ 3048, 2942, 1558, 1510, 1456, 1407, 748; MS (EI) m/z 96, 191, 207, 281, 321; HRMS-ESI (m/z): calcd for C₁₉H₁₆NS₂, [M+H]⁺: 322.0719, found 322.0715.

(*Z*)-Pent-1-ene-1,2-diylbis(phenylsulfane) (31).^[1] Yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.30 (t, J = 5.8 Hz, 2H), 7.24 - 7.18 (m, 2H), 6.58 (s, 1H), 2.24 (t, J = 7.2 Hz, 2H), 1.59 - 1.49 (m, 2H), 0.86 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 134.0, 130.6, 129.7, 129.4, 129.1, 128.8, 128.7, 126.8, 126.7, 39.2, 21.8, 13.4 ppm; v_{max} (KBr)/cm⁻¹ 3056, 2938, 1545, 1426, 1268, 1020, 744; MS (EI) m/z 65, 91, 109, 135, 167, 286; HRMS-ESI (m/z): calcd for C₁₇H₁₈NaS₂, [M+Na]⁺: 309.0742, found 309.0738.

(*Z*)-(5-Chloropent-1-ene-1,2-diyl)bis(phenylsulfane) (3m).^[2] Yield: 93%; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 3H), 7.36 - 7.29 (m, 4H), 7.25 (t, *J* = 5.2 Hz, 1H), 6.68 (s, 1H), 3.49 (t, *J* = 6.8 Hz, 2H), 2.44 (t, *J* = 7.2 Hz, 2H), 1.96 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 133.3, 131.6, 131.5, 130.6, 130.0, 129.3, 129.1, 127.2, 127.0, 44.1, 33.8, 31.0 ppm; v_{max} (KBr)/cm⁻¹ 3056, 2924, 1568, 1466, 1432, 1270, 1025, 745; MS (EI) m/z 65, 109, 167, 285, 320; HRMS-ESI (m/z): calcd for C₁₇H₁₇ClNaS₂, [M+Na]⁺: 343.0352, found 343.0348.

(Z)-(1-Cyclohexylethene-1,2-diyl)bis(phenylsulfane) (3n).^[2] Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.6 Hz, 2H), 7.33 (d, J = 4.8 Hz, 3H), 7.29 (d, J = 7.6 Hz, 3H), 7.25 (d, J = 7.0 Hz, 1H), 7.19 (t, J = 6.8 Hz, 1H), 6.72 (s, 1H), 2.15 (t, J = 10.2 Hz, 1H), 1.94 (d, J = 11.2 Hz, 2H), 1.74 (d, J = 11.2 Hz, 2H), 1.30 - 1.25 (m, 3H), 1.22 - 1.14 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 135.2, 133.8, 132.1, 130.2, 129.1, 128.8, 128.5, 127.0, 125.8, 46.2, 32.8, 26.4, 26.1 ppm; v_{max}(KBr)/cm⁻¹ 3058, 2927, 1565, 1466, 1415, 1268, 1058, 746; MS (EI) m/z 79, 91, 109, 167, 217, 326; HRMS-ESI (m/z): calcd for C₂₀H₂₂NaS₂, [M+Na]⁺: 349.1055, found 349.1052.

(*Z*)-(3-Methoxyprop-1-ene-1,2-diyl)bis(phenylsulfane) (3o).^[2] Yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.39 - 7.30 (m, 5H), 7.25-7.20 (m, 1H), 7.00 (s, 1H), 3.96 (s, 2H), 3.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.2, 134.5, 133.4, 130.3, 130.1, 129.2, 129.0, 127.4, 127.2, 126.8, 74.5, 58.1 ppm; v_{max}(KBr)/cm⁻¹ 3052, 2923, 1567, 1475, 1426, 1268, 1116, 748; MS (EI) m/z 69, 109, 177, 243, 288; HRMS-ESI (m/z): calcd for C₁₆H₁₇OS₂, [M+H]⁺: 289.0715, found 289.0712.

(**Z**)-(**3**-Methylbuta-1,**3**-diene-1,**2**-diyl)bis(phenylsulfane) (**3**p).^[2] Yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.2 Hz, 2H), 7.40 - 7.29 (m, 3H), 7.25 - 7.20 (m, 4H), 7.19 - 7.12 (m, 2H), 5.51 (s, 1H), 4.98 (s, 1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 138.6, 135.6, 135.1, 130.4, 129.6, 129.2, 128.8, 127.6, 127.3, 125.5, 115.5, 20.9 ppm; v_{max}(KBr)/cm⁻¹ 3048, 2926, 1665, 1576, 1457, 1419, 1268, 1015, 749; MS (EI) m/z 65, 91, 109, 175, 207, 251, 284; HRMS-ESI (m/z): calcd for C₁₇H₁₇S₂, [M+H]⁺: 285.0766, found 285.0763.

(*Z*)-2-Methyl-3,4-bis(phenylthio)but-3-en-2-ol (3q).^[1] Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2 Hz, 2H), 7.41 - 7.36 (m, 6H), 7.35 - 7.29 (m, 2H), 7.18 (t, *J* = 7.2 Hz, 1H), 2.17 (s, 1H), 1.46 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 135.0, 134.8, 134.8, 130.6, 129.3, 129.2, 127.5, 127.1, 125.8, 75.1, 29.4 ppm; v_{max}(KBr)/cm⁻¹ 3050, 2932, 1576, 1466, 1414, 1268, 1024, 750; MS (EI) m/z 59, 91, 134, 177, 207, 287, 302; HRMS-ESI (m/z): calcd for C₁₇H₁₉OS₂, [M+H]⁺: 303.0872, found 303.0868.

(*Z*)-(1,2-Bis(phenylthio)vinyl)trimethylsilane (3r). ^[3] Yield: 76%; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.6 Hz, 2H), 7.37 - 7.29 (m, 5H), 7.25 - 7.20 (m, 3H), 7.19 (d, *J* = 7.2 Hz, 1H), 0.01 (s, 9H) ; ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 134.8, 134.7, 132.0, 130.4, 129.8, 129.7, 129.6, 129.5, 128.6, 0.00 ppm; v_{max} (KBr)/cm⁻¹ 3058, 2940, 1578, 1506, 1472, 1266, 747; MS (EI) m/z 91, 109, 186, 262, 316; HRMS-ESI (m/z): calcd for C₁₇H₂₀NaOS₂Si, [M+Na]⁺: 339.0668, found 339.0664.

(*Z*)-4,5-Bis(phenylthio)pent-4-en-1-ol (3s). Yield: 83%; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.34 (d, 8.0 Hz, 4H), 7.25 - 7.20 (m, 2H), 6.63 (s, 1H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.38 (t, *J* = 7.6 Hz, 2H), 1.84 - 1.73 (m, 2H), 1.41 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 133.4, 132.8, 130.5, 130.4, 129.8, 129.2, 129.1, 127.0, 126.8, 61.7, 33.3, 31.5 ppm; v_{max} (KBr)/cm⁻¹ 3360, 2938, 1580, 1475, 1419, 1028, 748; MS (EI) m/z 91, 109, 167, 277, 302; HRMS-ESI (m/z): calcd for C₁₇H₁₉OS₂, [M+H]⁺: 303.0872, found 303.0867.

(Z)-(1-Phenylethene-1,2-diyl)bis(*p*-tolylsulfane) (4a). ^[1] Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.35 - 7.29 (m, 2H), 7.24 - 7.15 (m, 6H), 7.05 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 137.7, 136.8, 135.7, 131.7, 131.1, 131.0, 130.0, 129.6, 129.2, 128.5, 128.4, 127.5, 126.6, 21.2, 21.0 ppm; v_{max}(KBr)/cm⁻¹ 3058, 2929, 1538, 1466, 1418, 1268, 756; MS (EI) m/z 165, 210, 281, 348; HRMS-ESI (m/z): calcd for C₂₂H₂₀NaS₂, [M+Na]⁺: 371.0899, found 371.0896.

(*Z*)-(1-Phenylethene-1,2-diyl)bis((4-(*tert*-butyl)phenyl)sulfane) (4b). ^[2] Yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 5.6 Hz, 3H), 7.23 (d, *J* = 5.6 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 4H), 1.34 (s, 9H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 149.0, 139.2, 137.7, 131.7, 131.3, 130.7, 128.4, 128.4, 127.6, 127.4, 126.6, 126.5, 126.2, 34.7, 34.5, 31.3, 31.2 ppm; v_{max}(KBr)/cm⁻¹ 3054, 2939, 1593, 1528, 1476, 1262, 1114, 756; MS (EI) m/z 121, 207, 268, 387, 432; HRMS-ESI (m/z): calcd for C₂₈H₃₃S₂, [M+H]⁺: 433.2018, found 433.2014.

(*Z*)-(1-Phenylethene-1,2-diyl)bis((4-fluorophenyl)sulfane) (4c).^[2] Yield: 81%; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, *J* = 7.0 Hz, 4H), 7.25 - 7.18 (m, 5H), 7.14 - 7.05 (m, 3H), 6.90 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, *J* = 248.7 Hz), 161.8 (d, *J* = 246.3 Hz), 138.4, 135.8, 133.2 (d, *J* = 8.4 Hz), 130.8 (d, *J* = 8.1 Hz), 130.2, 130.1 (d, *J* = 3.8 Hz), 129.6 (d, *J* = 3.5 Hz), 128.5, 127.7, 126.8, 116.6 (d, *J* = 22.3 Hz), 116.4 (d, *J* = 22.2 Hz) ppm; v_{max}(KBr)/cm⁻¹ 3045, 2932, 1578, 1486, 1413, 1226, 826; MS (EI) m/z 127, 165, 294, 356; HRMS-ESI (m/z): calcd for C₂₀H₁₅F₂S₂, [M+H]⁺: 357.0578, found 357.0573.

(Z)-(1-Phenylethene-1,2-diyl)bis((4-chlorophenyl)sulfane) (4d).^[2] Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 7.24 (d, 7.2 Hz, 3H), 7.19 - 7.09 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 135.7, 133.8, 133.5, 133.1, 132.0, 131.8, 129.8, 129.6, 129.5, 129.1, 128.5, 128.0, 126.7 ppm; v_{max}(KBr)/cm⁻¹ 3044, 2928, 1536, 1476, 1423, 756; MS (EI) m/z 108, 165, 245, 338, 388; HRMS-ESI (m/z): calcd for C₂₀H₁₅Cl₂S₂, [M+H]⁺: 388.9987, found 388.9983.

(Z)-(1-Phenylethene-1,2-diyl)bis((4-bromophenyl)sulfane) (4e).^[2] Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 5.2 Hz, 1H), 7.25 - 7.20 (m, 2H), 7.19 - 7.08 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 135.7, 133.8, 133.4, 133.1, 132.0, 131.8, 129.8, 129.7, 129.5, 129.1, 128.7, 128.0, 126.7 ppm; v_{max} (KBr)/cm⁻¹ 3046, 2932, 1569, 1477, 1418, 754; MS (EI) m/z 96, 208, 398, 476; HRMS-ESI (m/z): calcd for C₂₀H₁₅Br₂S₂, [M+H]⁺: 476.8976, found 476.8972.

(*Z*)-1,1'-(((1-Phenylethene-1,2-diyl)bis(sulfanediyl))bis(4,1-phenylene))bis(ethan-1-one) (4f). ^[2] Yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 7.2 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.39 (s, 1H), 7.34 - 7.28 (m, 3H), 7.25 - 7.20 (m, 2H), 2.59 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 197.2, 141.6, 141.5, 138.1, 135.6, 134.8, 134.5, 130.2, 129.2, 129.0, 128.8, 128.7, 128.4, 127.1, 126.6, 26.7, 26.5 ppm; v_{max} (KBr)/cm⁻¹ 3047, 2926, 1668, 1576, 1486, 1415, 1263, 1089, 756; MS (EI) m/z 96, 207, 281, 380, 404; HRMS-ESI (m/z): calcd for C₂₄H₂₁O₂S₂, [M+H]⁺: 405.0977, found 405.0972.

(*Z*)-3,3'-((1-Phenylethene-1,2-diyl)bis(sulfanediyl))dithiophene (4g). Yield: 66%; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 5.2 Hz, 1H), 7.24 (d, *J* = 5.6 Hz, 4H), 7.19 (d, *J* = 5.6 Hz, 1H), 7.08 (d, *J* = 3.6 Hz, 1H), 7.02 (dd, *J* = 5.4, 3.8 Hz, 1H), 6.82 (dd, *J* = 5.4, 3.8 Hz, 1H), 6.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 135.8, 133.6, 133.0, 132.7, 131.7, 131.5, 130.0, 129.1, 128.2, 127.8, 127.7, 127.3, 127.2 ppm; v_{max} (KBr)/cm⁻¹ 3046, 2928, 1548, 1456, 1417, 757; MS (EI) m/z 71, 115, 217, 277, 332; HRMS-ESI (m/z): calcd for C₁₆H₁₂NaS₄, [M+Na]⁺: 354.9714, found 354.9710.

References

 J. Chen, S. Chen, X. Xu, Z. Tang, C.-T. Au and R. Qiu, J. Org. Chem., 2016, 81, 3246-3255.

 J. Li, C. Li, L. Ouyang, C. Li, S. Yang, W. Wu and H. Jiang, *Adv. Synth. Catal.*, 2018, **360**, 1138-1150.

K. B. Zou, X. H. Yin, W. Q. Liu, R. H. Qiu, R. X. Li, L. L. Shao, Y. H. Li, X. Hua Xu, and R. H. Yang, *Synthetic Commun.*, 2009, **39**, 2464-2471.

¹H and ¹³C NMR spectra of compounds 3

- 19 -

-163.531 -161.071 -161.071 -136.011 -136.011 -138.585 -128.555 -128.5555 -128.5555 -128.5555 -128.5555 -128.5555 -128.5555 -128.5555 -128.55555 -128.5555 -128.5555 -128.55555 -128.5555 -128.5555 -128.5

- 21 -

- 28 -

- 34 -

¹H and ¹³C NMR spectra of compounds 4

8888885598885	16
NN4400000000	00
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	27

7,503 7,483 7,483 7,483 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2; f1 (ppm)

138.246 135.812 135.812 133.507 133.507 133.509 133.096 133.099 133.099 132.099 129.533 129.533 129.533 129.533 129.533 129.533 129.533 129.533 129.533 129.533 129.533 128.603 126.603

7 239 7 7 754 7 7 754 7 7 754 7 7 592 7 7 592 7 7 503 7 503 7 503 7 7 503 7 7 503 7 7 503 7 7 503 7 7 503 7 7 503 7 7 503 7 7 503 7 7 503 7 7 503 7 7 504 7 7 503 7 7 504 7 7 7 504 7 7 505 7

~2.589

$\begin{array}{c} 7,470\\ 7,385\\ 7,372\\ 7,372\\ 7,372\\ 7,209\\ 7,120$

