Supporting Information

Growth of narrow-bandgap Cl-doped carbon nitride nanofibers on carbon nitride nanosheets for high-efficiency photocatalytic H₂O₂ generation

Tingshuo Ji^a, Yanzhen Guo,*^b Huili Liu^b, Binbin Chang^b, Xuefeng Wei*^a and Baocheng Yang*^b

^aCollege of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang, 471023, PR China

^bHenan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

E-mail: <u>baochengyang@infm.hhstu.edu.cn</u>

Fig. S1. Zeta potentials of the cyanuric chloride, melamine, CNS and acidified CNS samples.

Fig. S2. EDX spectra of Cl-CNF, CNS and Cl-CNF/CNS.

Fig. S3. (a) SEM image of Cl-CNF/CNS0.3 (Representative scattered Cl-CNF are marked in yellow dashed circles in the image). (b) SEM image of Cl-CNF/CNS0.5 (The thicker Cl-CNF are representatively marked in red dashed circles in the image). (c) SEM image of Cl-CNF/CNS0.6 (The thicker Cl-CNF are representatively marked in red dashed circles in the image).

Fig. S4. Tauc plots of Cl-CNF and CNS.

Fig. S5. Surface area and pore structure characterization of the samples. (a) N_2 adsorptiondesorption isotherms. (b) Pore size distribution.

Fig. S6. H_2O_2 evolution rates over various samples. The sample respectively are: (A) Melamine-derived carbon nitride. (B) Cl-CNF/melamine-derived carbon nitride nanohybrid. (C) Dicyandiamide-derived carbon nitride without NH₄Cl. (D) Cl-CNF/ dicyandiamide-derived carbon nitride without NH₄Cl.

Fig. S7. Photodecompositon and production of H₂O₂ over Cl-CNF/CNS.

Fig. S8. EIS plots of the samples in dark.

Fig. S9. Mott-Schottky curves of the samples. (a) Cl-CNF, (b) CNS.

Sample	C (%)	N (%)	Cl (%)
Cl-CNF	39.08	58.25	2.67
CNS	52.97	47.00	0.03
Cl-CNF/CNS	30.7	68.1	1.12

Table S1. Atomic ratio of Cl-CNF, CNS and Cl-CNF/CNS.

Table S2. Comparison of photocatalytic H₂O₂ production activity over different samples.

Catalysts	Reaction conditions	H ₂ O ₂ rate (µmol/g/h)	AQY (%)	Ref.
DCN-15A	50 mg catalyst, 60 mL 20 vol% IPA, $\lambda > 420$ nm	96.8	10.7 at 420nm	S1
CTF-BDDBN	30 mg catalyst, 50 ml H ₂ O, λ > 420 nm	97.2		S2
PT-g-C ₃ N ₄	30 mg catalyst, 60 ml H ₂ O, λ > 400 nm	28.92		S3
g-C ₃ N ₄ -450	100 mg catalyst, 100 ml H ₂ O, $\lambda > 420$ nm	170	4.3 at 420 nm	S4
GCN (56)	20 mg catalyst, 5 mL 90 vol% ethanol, $\lambda > 420$ nm	188		S5
50-Co/CN	20 mg catalyst, 20 mL 10 vol% ethanol, $\lambda > 420$ nm	70		S6
g-C ₃ N ₄ -SiW ₁₁	100 mg catalyst, 100 mL 5 vol% methanol, AM 1.5, pH=3	178	6.5 at 420nm	S7
Cl-CNF/CNS	50 mg catalyst, 50 mL 10 vol% ethanol, $\lambda > 420$ nm	247.5	23.67 at 420 nm	This work

References

- S1 L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin, X. Hai, H. Song and J. Ye, *Small*, 2018, 14, 1703142.
- S2 L. Chen, L. Wang, Y. Wan, Y. Zhang, Z. Qi, X. Wu and H. Xu, *Adv. Mater.*, 2019, **32**, 1904433.

- S3 N. Lu, N. Liu, Y. Hui, K. Shang, N. Jiang, J. Li and Y. Wu. Chemosphere, 2020, 241, 124927.
- S4 Z. Zhu, H. Pan, M. Murugananthan, J. Gong and Y. Zhang, *Appl. Catal., B*, 2018, **232**, 19–25.
- S5 Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa and T. Hirai, ACS Catal., 2015, 5, 3058–3066.
- S6 Y. Peng, L. Wang, Y. Liu, H. Chen, J. Lei and J. Zhang, *Eur. J. Inorg. Chem.*, 2017, **2017**, 4797–4802.
- S7 S. Zhao, X. Zhao, S. Ouyang and Y. Zhu. Catal. Sci. Technol., 2018, 8, 1686–1695.