Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Recent Advances in Bismuth Oxyhalide Photocatalysts for Degradation of Organic Pollutants

in Wastewater

Yang Li¹, Haiyan Jiang², Xu Wang¹, Xiaodong Hong^{3*}, Bing Liang⁴

¹College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China

² Basic Department, Liaoning Institute of Science and Technology, Benxi, 117004, China

³School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China

⁴College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

*Correspondence: hongxiaodong@lntu.edu.cn; Tel.: +86-13841877730

Table S1 Controllable ynthesis of BiOX photocatalysts and their photodegradation performance

Material/method	Morphology/Dye/concentr ation	Light	Degradation performance	Refer
BiOCl hydrothermal method; Bi(NO ₃) ₃ ·5H ₂ O,ultra-water,NaCl, NaOH , pH=2/7/10, 160°C24h		UV lamp	BiOCl-10>BiOCl-7>BiOCl-2 efficiency of oxidation gaseous Hg Degradation rate: Hg 2500s 60%	[3]
BiOBr hydrothermal approach NaBiO ₃ ·2H ₂ O,HNO ₃ ,deionisedwater, 200°C for 24 h		400W halogen lamp	K(pH=9)=0.037	[4]
BiOBr hydrothermal Method; Bi(NO ₃) ₃ ·5H ₂ O, NaBr, water pH=2-10, 180°C for 20h	0.02g BiOBr CIP(40ml,5mg L-1) 0.2g BiOBr BhB (200ml 1×10-5M)	Xe lamp	BiOBr-8>BiOBr-6>BiOBr-4>BiOBr- 10>BiOBr-2. Degradation rate: RhB 45min 99%	[5]

BiOBr-1 2 3 4 (a) hvdrothermal method: Bi(NO₃)₃·5H₂O, CTAB, NaOH(adjust pH=7 5 3 2)170°C for 17h (a) BiOBr-squareBiOBr-1 (b) BiOBr-circle BiOBr-4

0.1g BiOBr RhB(0.02mmol/L,100mL) 0.05g BiOBr MO(50ml,10 mg/L) 0.5g BiOBr phenol (20mg/L, 50 mL)

Bi(NO₃)₃·5H₂O, KI, F127, glacial acetic acid; 180°C 24h and 300° 2h

> 1g/L BiOI MO(50ml, 10 mg/L)

50 mg BiOCl RhB/TC-

hydrothermalmethod; Bi(NO₃)₃·5H₂O, dulcitol, KCl, HNO₃/ KOH adjusted pH=4/6/8/10 160°C 24h

BiOI

BiOCl

hydrothermal approach;

BiOCl hydrothermal route; Bi(NO₃)₃·5H₂O, HNO₃, C-PAM, SodiumCitrate, 0.3g NaOH, 150°C4h

BiOCl hydrothermal route ; BOC-1 BOC-2 BOC-3 BOC-4 Bi(NO₃)₃·5H₂O, deionized water, Xylitol(0.1g,0.3g,0.5g,1.0g),KCl, KOH,160°C24h (a)BOC-1 (b)BOC-4

50 mg T-BiOCl MO(50ml,20mg/L)

300W Xe lamp

Degradation rate RhB MO phenol BiOBr-circle>BiOBr-square> N doped P25 Degradation rate: RhB 30min 100%

[6]

[7]

500W Xe lamp

F127-BiOI>BiOI KF127-BiOI=0.229 kBiOI=0.108

BiOCl-4>BiOCl-6>BiOCl-8>BiOClvisible light [8] 10 Degradation rate: RhB 6 min more than 98% Degradation rate: TC-HCl 90 min 60%

300W BiOCl-150°>BiOCl-180°>BiOCl-120° [9] BiOCl-12h>BiOCl-4h>BiOClmercury 2h>BiOCl-1h lamp BiOCl(1.2gNaOH)>BiOCl(0.9gNaOH)>BiOCl(0.6gNaOH)>BiOCl(0.3gNaO H)>BiOCl(0gNaOH) BiOCl>P25 K=0.0655 visible light BOC-1>BOC-3>BOC-1>BOC-2> [10] BOC-4

Degradation rate: RhB 20min 98%

BiOCl ethylene glycolmediated solvothermal method; BiOCl-1/5/10/15 Bi(NO₃)₃·5H₂O,KCl(1/5/10/15),ethyl ene glycol,160°C 12h

BiOCl-120/140/160/180; one-stepsolvothermal method; Bi(NO₃)₃,ethyleneglycol,HCl; 120/140/160/180°C 24h BiOCl-140-400; BiOCl-140,400°C 2h

BiOBr microspheres solvothermal synthesis; Bi(NO₃)₃·5H₂O ,KBr,ethylene glycol; 145°C18h

BiOI solvothermal method; Bi(NO₃)₃·5H₂O ,KI ,ethylene glycol;120-216.6°C12-24.5h, Bi(NO₃)₃·5H₂O , ionic liquid 1- 5 butyl-3-metilimidazolium iodide,ethylene glycol;120-216.6°C12-24.5h

BiOI: hollow flower solvothermal method; Bi(NO₃)₃·5H₂O ,KI ,ethylene glycol; 160°C24h

> 100 mg BiOI RhB(20 mg L⁻¹)

BiOBrxI_{1-x} solvothermal method; Bi(NO₃)₃·5H₂O,NH₄Br,NH₄I,ethylene glycol;160 °C for 12 h

BiOCl solvothermal modification method; OV-BOC Bi(NO₃)₃·5H₂O,NaCl,EG,160°C,16 h BOC Bi(NO₃)₃·5H₂O,NaCl,EtOH,160°C, 16h

BiOCl alcohol mediated solvothermal method: Bi(NO₃)₃·5H₂O,KCl,1-ethanol/ 2ethylene glycol/3-glycerol; 160°C,12h (d)BiOCl-1 (e)BiOCl-2 (f)BiOCl-3

BiOBr solvothermal route; Bi(NO₃)₃·5H₂O,KBr,deionized water (ETH, ISO, EG, GLY)140°C 16h

10.0 mg BiOBr_xI_{1-x} RhB(30 mL 20mg/L)

100 mg BiOCl RhB/MO/phenol (100ml 10mg/L)

40 mg BiOCl CBZ(50ml,2.5mg/L)

Xe arc lamp

350W

 $BiOBr_{x}I_{1-x}(x=0.8) > BiOBr_{x}I_{1-x}(x=0.5)$ [16] >BiOBr_xI_{1-x}(x=1)>BiOBr_xI_{1-x}(x=0.2) >BiOBr_xI_{1-x}(x=0)>P25 Degradation rate: RhB 90min 99%

300W OV-BOC+H2O2>OV-BOC>BOC [17] xenon lamp $>H_2O_2$

350W BiOCl-2>BiOCl-3>BiOCl-1 [18] xenon lamp K=0.0118

300W	BiOBr(GLY)>BiOBr(EG)>BiOBr(ISO	[19]
Xenon lamp)>BiOBr(E)>BiOBr(W)	
	Degradation rate :	
	brilliant blue K-NR 120min 90.9%	

BiOBr solvothermal approach; Bi(NO₃)₃·5H₂O ,CTAB,ethanol, 150°C 24h (a)BiOBr-EtOH, (b)BiOBr-EG, (c)BiOBr-TB, (d)BiOBr-BA (e)BiOBr-ME

BiOI hydrothermal or solvothermal method; Bi(NO₃)₃·5H₂O ,KI,H₂O, ETH, EG, GLY;160°C,12 h

hydrolysismethod(BiOI-H) solvothermal method (BiOI-ST) ; BiOI-ST:Bi(NO₃)₃·5H₂O ,KI ,ethylen-e glycoldistillated water;180°C12h

BiOI

BiOCl-1 solvothermal process Bi(NO₃)₃·5H₂O,PEG10000,PEG400, NaCl,180°C24h BiOCl-2 Bi(NO₃)₃·5H₂O,CTAB,PEG400,NaCl ,180°C15h BiOCl Bi(NO₃)₃·5H₂O,mannitolsolution,Na Cl,160°3h (a)BiOCl-1 (b)BiOCl-2

0.025g BiOBr RhB (100ml,10 mg L⁻¹) 0.1g BiOBr phenol(100ml,10 mg/L)

40 mg BiOI As(III)solution(80 mL 5 mg/L)

0.68g/L BiOI TCH 2mg/L

50 mg BiOCl BPA aqueous(50ml,1×10⁻ ⁵m) 300W Xenon lamp

W BiOBr(BA)>BiOBr(ME)>BiOBr(TB) [20]
amp >BiOBr(EtOH)>BiOBr(EG)>BiOBr (W)
Degradation rate:
RhB K=0.148
Degradation rate:
Phenol 3h almost 20%

300W GLY>EG>ETH Xe lamp Degradation rate: As(III) 40 min 96.6%

1000WBiOI-ST>BiOI-HtungstnDegradation rate:halogenlam-TCH:101.5 min 100%pP

300W	BiOCl-1>BiOCl-2	[23]
Hg arc lamp	Degradation rate:	
	BPA 6h 96%	
	Degradation rate:	
	TOC 13h 96%	

[21]

[22]

BiOCl

facile solvothermal method; Bi(NO₃)₃·5H₂O,KCl,methanol ,desired volume fractions of water (0, 5, 10, and 15%)120°C12h BOC-1 BOC-2 BOC-3 BOC-4 (e)BOC-1 (g)BOC-3

10 mg BiOCl RhB(50ml,20mg/L) MO(50ml,10mg/L) **BiOICatalysts** 0.1g/L-0.4g/L100ml deionized water b 50mg/L 100mg/L 200mg/L 300mg/L 400mg/L BiOCl ATL (10µM) in 30 mL DI water 300mg/L BiOCl ATL (10µM) in 30 mL DI water PBSadjustedpH=5.2/6/7/8 (8.7)100 mg BiOCl PFOA(200ml 20umol/L)

(e)

40 mg BiOCl RhB(40ml,20mg/L) 300W xenon lamp BOC-3>BOC-1>BOC-2>BOC-4 Degradation rate: MO 50min almost 100% Degradation rate: RhB 40min almost 100% [24]

350W	hydrogen evolution rate	[25]
xenon light	BiOI	
	Ph=7>Ph=5>Ph=9>Ph=3	
	Ph=7(1,316.9 μ mol h ⁻¹ g ⁻¹)	
	catalyst dosage	
	0.2g/L>other	
	1316.9 μ mol h ⁻¹ g ⁻¹	
	Catalyst type	
	BiOI>BiOBr, BiOCl	
	BiOI>BiOAxB1-x	
500W	BiOCl(400mg/L)>BiOCl(300mg/L)>	[26]
xenon lamp	BiOCl(200mg/L)>BiOCl(100mg/L)>	
	BiOCl(50mg/L)	
	Degradation rate:BiOCl(300mg/L)	
	ATL 60min 90%	
	BiOCl(pH=5.2)>BiOCl(pH=6)>BiOCl	
	(pH=7)>BiOCl(pH=8.7)>BiOCl(pH=8	
)	

UV Irradiation (254nm,10 W)	BiOCl>ln ₂ O ₃ >P25 defluorination efficiency : 24h,59.3%	[27]
•••)		

500W xenon lamp RhB> MO > MB . Degradation rate: MB 30min 94%

[28]

BiOX

microwave-assisted solvothermal method; Bi(NO₃)₃·5H₂O,KX,EG,EtOH,PEG,m icrowave 450W(10 20 30 60min)(120 140 160°C)pH (3, 5, 7, and 9) BiOAxB1-x KAB

BiOCl hydrolysismethod; NaBiO₃·2H₂O,deionized water,HCl,

BiOCl hydrolytic method; bismuth nitrate,HCl,Sodium carbonate,pH=2

BiOCl hydrolysis method; NaCl,Bi(NO₃)₃·5H₂O, ethanol,NaCl ,90°C 3h

MO/MB(40ml,10mg/L)

BiOBr-1 a hydrolysis process; Bi(NO₃)₃·5H₂O ,KBr,EG,deionised water BiOBr-2 b solvothermal synthesis; Bi(NO₃)₃·5H₂O ,KBr,EG,160°C,10h

BiOBr hydrolysis or alcoholysis method; BiBr₃,water(H₂O),ethanol,isopropyl alcohol,room temperature,magnetic stirring 20°C 40°C 60°C

BiOI hydrolysismethod; Bi(NO₃)₃·5H₂O ,KI,deionized water: 10-50ml,room temperature.

BiOX(Cl/I) BiOCl /BiOI hydrolysis method NaBiO₃,ethanol,DI water,HCl/HI (b)BiOCl (d)BiOI

BiOX facile co-precipitation method, Bi(NO₃)₃·5H₂O,NaBr solution, stirre 24 h low-temperature solutionroute, facile chemical etching method

[33]

[29]

[30]

[31]

[32]

Br-BiOI chemical precipitation route; Bi(NO ₃) ₃ ·5H ₂ O,KI,NaBr, ethylene glycol;room temperature	50 mg Br-BiOI RhB;phenol(50mL of 3*10 ⁻⁵ mol/L)	500W Xe lamp visible light	15% Br-BiOI>20% Br-BiOI>10% Br- BiOI>5% Br-BiOI> BiOI Degradation rate : 15% Br-BiOI ;2.5h RhB almost 100% 15% Br-BiOI; 10h phenol more than 50%	[34]
Bi ₂₄ O ₃₁ Cl ₁₀ chemicalprecipitation method; Bi(NO ₃) ₃ ·5H ₂ O,HNO ₃ ,CTAC,NaOH, 400°C-800°C	500° 700° 700° 100 mg BiOCl RhB(150ml 0.02M)	500W xenon lamp	Bi ₂₄ O ₃₁ Cl ₁₀ >BiOCl>TiO ₂ /N>Bi ₂ O ₃ Degradation rate: RhB 60min 95%	[35]
BiOCl two-phase reaction;BiOCl-1 octagonal: Bi(NO ₃) ₃ ·5H ₂ O,HCl,deionized water BiOCl-2 Bi(NO ₃) ₃ ·5H ₂ O,KCl,deionized water (b)BiOCl-1 (d)BiOCl-2	Anno(150mm 0.021vf) The first of the first	500W xenon lamp	BiOCl-1>BiOCl-2 Degradation rate: MO 80min almost 100%	[36]
BiOX two-phase method; BIOCI/Br-NSS Bi(NO ₃) ₃ ·5H ₂ O, ODE,OA,OLA,N ₂ ,170°C,KBr/I/Cl, HNO ₃ ,100°C,0.5h	MO(40ml, 10mg/L) pH=0 pH=7 pH=14 put 0 put 0 25mg BIOBr RhB/MB(100 mL 10mg/L) O ₂ evolution 25mg BIOBr AgNO ₃ (50 mL 0.05M)	300W xenon lamp	BiOBr-acid0.5>BiOBr-neutral0.5> BiOBr-acid4 Degradation rate: RhB 50min 96% Degradation rate: MO 120min 39% O ₂ evolution BiOBr-acid4 best	[37]
BiOI nanoplates sonochemical method; Bi(NO ₃) ₃ ·6H ₂ O,NaI,deionized water,NaOH; 35kHz ultrasonic bath at 80°C 5h.	200 mgBiOI	Xe lamp	pH=12>pH=10>pH=8 Degradation rate: RhB 180min 81.19%	[38]

RhB(200ml 1×10-5M)

BiOI microwave method Bi(NO₃)₃·5H₂O, acetic acid, EDTA, KI, 110°C, 5min

BiOBr microwave-assisted ionothermal synthesis; Bi(NO₃)₃·5H₂O,HB (OB,HK,CTAB,MI), EG, 1000W, 160°C/400°C 4h

BiOBr porous nanospheres microwave-assisted ionic liquid Synthsis; Bi(NO₃)₃·5H₂O, PVP K30, EG, [C16mim]Br, microwave reactor 160°C 20min BiOBr hollow microspheres(without pvp)

BiOBr combustion method; Bi(NO₃)₃·5H₂O, NH₄Br, urea, nitric acid, deionized water; 300°C

BiOBr electrospinning and postcalcination BiBr₃ 500°C BiBr₃(as1%,2%, 3% and 4%) in polymer (PAN)

BiOBr nanosheets Liquid Phase Exfoliation Bi(NO₃)₃·5H₂O, KBr, formamide,

(d) 	6000K Xenon lamp	B110-40>B130-40>B110-40>B150- 40>B110-20>B110-00 Degradation rate: RhB 20min 98.2%
250 mgBiOI RhB(250 mL 5mg/L)	300W Xenon lamp	BiOBr>BiOBr(THB)>BiOBr(BQ)> BiOBr(EDTA)>BiOBr(AgNO ₃) Degradation rate : RhB 180min 99.57% TOC 180min 12.24%
0.025g BiOBr RhB (100ml,10 mg L ⁻¹)	300W Xenon lamp	Porous BiOBr>Hollow BiOBr Degradation rate : RhB 60min almost 100%
0.02g BiOBr RhB (100ml,10 mg L ⁻¹)	300W xenon lamp	NH ₄ Br/ Bi(NO ₃) ₃ ·5H ₂ O(3 4, and 5) BiOBr-5>BiOBr-4>BiOBr-3 Degradation rate : RhB 120min 91.6%
0.1g BiOBr RhB(100ml,20 mg L ⁻¹)	150W Xe lamp	BiOBr(X=4)>BiOBr(X=1)>BiOBr(X= 3)>BiOBr(X=2)
Alizarin Red S (ARS) dye 100 nm 0.03g BiOBr MO (50ml,2×10-5M)	500W Xenon lamp CO ₂ reduction: 200mg BiOBr 300W Xe lamp	monolayered BiOBr>bulk BiOBr Degradation rate: MO 300min 33% CO ₂ reduction performance: monolayered BiOBr>bulk BiOBr

[39]

[40]

[41]

[42]

[43]

[44]

BiOClBiOBr BiOI solvent-free grinding mechanical method; Bi(NO₃)₃·5H₂O, KBr/I/Cl, agate mortar, ground for5min(0.5/1/2/3/5/10min) (a)BiOCl (d)BiOBr (g)BiOI

500W BiOCl>BiOBr>BiOI xenon lamp

References

- [3] J. Zhang, J. Wu, P. Lu, Q. Liu, T. Huang, H. Tian, R. Zhou, J. Ren, B. Yuan, X. Sun, Mater. Lett. 186 (2017) 353-356.
- [4] X. Zhang, R. Li, M. Jia, S. Wang, Y. Huang, C. Chen, Chem. Eng. J. 274 (2015) 290-297.

RhB/MB(50 mL 5mg/L)

- [5] P. Intaphong, A. Phuruangrat, K. Karthik, P. Dumrongrojthanath, T. Thongtem, S. Thongtem, J. Inorg. Organomet. P. 30 (2020) 714-721.
- [6] H. Feng, Z. Xu, L. Wang, Y. Yu, D. Mitchell, D. Cui, X. Xu, J. Shi, T. Sannomiya, Y. Du, ACS Appl. Mater. Interface 7 (2015) 27592-27596.
- [7] L. Dou, D. Ma, J. Chen, J. Li, J. Zhong, Solid State Sci. 90 (2019) 1-8.
- [8] Z. Zou, H. Xu, D. Li, J. Sun, D. Xia, Appl. Surf. Sci. 463 (2019) 1011-1018.
- [9] K. Li, Y. Liang, J. Yang, Q. Gao, Y. Zhu, S. Liu, R. Xu, X. Wu, J. Alloy. Compd. 695 (2017) 238-249.
- [10] Y. Cai, D. Li, J. Sun, M. Chen, Y. Li, Z. Zou, H. Zhang, H. Xu, D. Xia, Appl. Surf. Sci. 439 (2018) 697-704.
- [11] X. Gao, W. Peng, G. Tang, Q. Guo, Y. Luo, J. Alloy. Compd. 757 (2018) 455-465.
- [12] J. Tian, Z. Chen, X. Deng, Q. Sun, Z. Sun, W. Li, Appl. Surf. Sci. 453 (2018) 373-382.
- [13] A.C. Mera, H. Váldes, F.J. Jamett, M. Meléndrez, Solid State Sci. 65 (2017) 15-21.
- [14] A.C. Mera, Y. Moreno, D. Contreras, N. Escalona, M.F. Meléndrez, R.V. Mangalaraja, H.D. Mansilla, Solid State Sci. 63 (2017) 84-92.
- [15] Z. Jiang, X. Liang, Y.Liu, T. Jing, Z. Wang, X. Zhang, X. Qin, Y. Dai, B. Huang, Appl. Catal. B-Environ. 211 (2017) 252-257.
- [16] X. Zhang, C.Y. Wang, L.W. Wang, G.X. Huang, W.K. Wang, H.Q. Yu, Sci. Rep. 6 (2016) 1-10.
- [17] H. Zhao, X. Liu, Y. Dong, Y. Xia, H. Wang, Appl. Catal. B-Environ. 256 (2019) 117872.
- [18] X. Gao, Q. Guo, G. Tang, W. Zhu, Y. Luo, J. Solid State Chem. 277 (2019) 133-138.
- [19] H. Xing, H. Ma, Y. Fu, X. Zhang, X. Dong, X. Zhang, J. Renew. Sustain. Ener. 7 (2015) 063120.
- [20] X.X. Wei, B. Cui, X. Wang, Y. Cao, L. Gao, S. Guo, C.M. Chen, CrystEngComm 21 (2019) 1750-1757.
- [21] J. Hu, S. Weng, Z. Zheng, Z. Pei, M. Huang, P. Liu, J. Hazard. Mater. 264 (2014) 293-302.
- [22] A. Dehghan, M.H. Dehghani, R. Nabizadeh, N. Ramezanian, M. Alimohammadi, A.A. Najafpoor, Chem. Eng. Res. Des. 129 (2018) 217-230.
- [23] S.q. Guo, X.h. Zhu, H.j. Zhang, B.c. Gu, W. Chen, L. Liu, P.J. Alvarez, Environ. Sci. Technol. 52 (2018) 6872-6880.
- [24] Y. Xu, X. Hu, H. Zhu, J. Zhang, J. Mater. Sci. 51 (2016) 4342-4348.
- [25] G.J. Lee, Y.C. Zheng, J.J. Wu, Catal. Today 307 (2018) 197-204.
- [26] J. Hu, X. Jing, L. Zhai, J. Guo, K. Lu, L. Mao, Chemosphere 220 (2019) 77-85.
- [27] Z. Song, X. Dong, N. Wang, L. Zhu, Z. Luo, J. Fang, C. Xiong, Chem. Eng. J. 317 (2017) 925-934.
- [28] D. Zhang, L. Chen, C. Xiao, J. Feng, L. Liao, Z. Wang, T. Wei, J. Nanomater. 2016 (2016) 5697672.
- [29] Q.L. Yuan, Y. Zhang, H.Y. Yin, Q.L. Nie, W.W. Wu, Rapid, J. Exp. Nanosci. 11 (2016) 359-369.
- [30] R. Li, X. Gao, C. Fan, X. Zhang, Y. Wang, Y. Wang, Appl. Surf. Sci. 355 (2015) 1075-1082.
- [31] J. Lu, J. Wu, W. Xu, H. Cheng, X. Qi, Q. Li, Y. Zhang, Y. Guan, Y. Ling, Z. Zhang, Mater. Lett. 219 (2018) 260-264.
- [32] J.C. Ahern, R. Fairchild, J.S. Thomas, J. Carr, H.H. Patterson, Appl. Catal. B-Environ. 179 (2015) 229-238.
- [33] A. Zhang, W. Xing, D. Zhang, H. Wang, G. Chen, J. Xiang, Catal. Commun. 87 (2016) 57-61.
- [34] H. Huang, X. Li, X. Han, N. Tian, Y. Zhang, T. Zhang, Phys. Chem. Chem. Phys. 17 (2015) 3673-3679.

- [35] L. Wang, J. Shang, W. Hao, S. Jiang, S. Huang, T. Wang, Z. Sun, Y. Du, S. Dou, T. Xie, D. Wang, J. Wang, Sci. Rep. 4 (2014) 7384.
- [36] Z. Xu, Ferroelectrics 527 (2018) 37-43.
- [37] Z. Wang, Z. Chu, C. Dong, Z. Wang, S. Yao, H. Gao, Z. Liu, Y. Liu, B. Yang, H. Zhang, ACS Appl. Nano Mater. 3 (2020) 1981-1991.
- [38] P. Intaphong, A. Phuruangrat, S. Thongtem, T. Thongtem, Mater. Lett. 213 (2018) 88-91.
- [39] J.M. Montoya-Zamora, A. Martínez-de la Cruz, E.L. Cuéllar, Res. Chem. Intermediat. 43 (2017) 2545-2563.
- [40] Y. Miao, Z. Lian, Y. Huo, H. Li, Chinese J. Catal. 39 (2018) 1411-1417.
- [41] Z. Chen, J. Zeng, J. Di, D. Zhao, M. Ji, J. Xia, H. Li, Green Energy Environ. 2 (2017) 124-133.
- [42] M. Gao, D. Zhang, X. Pu, H. Li, J. Li, X. Shao, K. Ding, Mater. Lett. 140 (2015) 31-34.
- [43] V.J. Babu, M. Sireesha, R.S.R. Bhavatharini, S. Ramakrishna, Mater. Lett. 169 (2016) 50-53.
- [44] H. Yu, H. Huang, K. Xu, W. Hao, Y. Guo, S. Wang, X. Shen, S. Pan, Y. Zhang, ACS Sustain. Chem. Eng. 5 (2017) 10499-10508.
- [45] Y. Long, Q. Han, Z. Yang, Y. Ai, S. Sun, Y. Wang, Q. Liang, M. Ding, J. Mater. Chem. A 6 (2018) 13005-13011.