Supplementary Information

For

Visible-light-driven cascade radical cyclization toward the synthesis of α -carbonyl alkyl-substituted benzimidazo[2,1*a*]isoquinolin-6(5*H*)-ones

Jing Liu,^{#, a,b} Hong-Li Huang, ^{#, c} Chen Wang,^b Yinghua Li, ^b Huaqiang Li, ^b

Honggang Hu, ^b Shipeng He, ^b Hua Tang, *,^b Fei Gao*,^b

^a Department of Chemistry, College of Sciences, Shanghai University, No. 99 shangda Road, Shanghai 200444, China.

^b Institute of Translation Medicine, Shanghai University, No. 99 shangda Road, Shanghai, 200444, China.

^c College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China.

Contents

1.	General Information	S2
2.	Typical Procedures for preparation of Substrates	S2
3.	General Procedures	S2-S3
4.	Characterization of products	S3-S12
5.	¹ H NMR and ¹³ C NMR spectra for substrates and products	S13-S40

E-mail: tanghua0309@126.com; flyhightly@shu.edu.cn

1. General information

All starting materials were purchased from commercial sources without further purification. Glassware was dried in oven and cooled before use. All reactions were monitored by TLC and visualized by UV lamp (254nm). The solvents were distilled from the appropriate drying reagents. Yields generally referred to chromatographically isolated yields, unless otherwise noted.

¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra were obtained on Bruker AV-600 instrument in CDCl₃ or DMSO-d₆. For ¹H NMR (600MHz), CDCl₃ (δ = 7.26 ppm) and DMSO-d₆ (δ = 2.5 ppm) served as internal standard and data is reported as follows: chemical shift (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet), coupling constant (in Hz), and integration. HRMS (ESI) spectra were recorded on a Bruker Esquire LC mass spectrometer using electrospray ionization. Flash column chromatography was performed using 200-300 mesh silica gel.

2. Typical Procedures for Preparation of Substrates 1

Substrates 1 were synthesized according to literature procedures, and the NMR spectroscopys were consisted with those data. ^[S1]

Reference:

[S1] (a) Pan, C.; Yuan, C.; Yu, J.-T. Org. Biomol. Chem., 2021, 19, 619-626. (b) Liu, L.; Yang, D.Y.; He, Y.-H.;
Guan, Z. J. Org. Chem., 2020, 85, 11892-11901. (c) Yuan, Y.; Zheng, Y.; Xu, B.; Liao, J.; Bu, F.; Wang, S.; Hu, J.-G.; Lei, A. ACS Catal. 2020, 10, 6676.

3. General Procedures

(1) General Procedures for Cascade Radical Cyclization

To a 10 mL bottom flask were added substrate **1** (0.1 mmol), **2** (0.2 mmol), DMF (anhydrous, 1.0 mL), *fac*-Ir(ppy)₃ (0.005 mmol) and 2,6-lutidine (0.2 mmol). The mixture was charged with Ar three times under -78 °C and then was stirred under a blue LEDs (5 W) at room temperature. After the substrate was consumed (monitored by TLC), the reaction mixture was quenched with brine (3 mL) and was extracted with EtOAc (5 mL × 4). The organic layer was combined, dried (Na₂SO₄), filtered, and concentrated in *vacuo*. The residue was purified by silica gel flash column chromatography (petroleum ether/EtOAc) to afford the desired product **3**.

(2) General Procedures for Cell Cytotoxicity of Compounds 3

The cell viability experiment was conducted using a Cell Counting Kit-8 (CCK8, Beyotime). U87 cells or MDA-MB-231 cells were seeded in 96-well plates with ~5000 cells in each well and incubated overnight. Solutions of 100 μ M compound **3** were made up in medium, and a serial three-fold dilution of the solution was performed to obtain a range of concentrantions from 0.4115 to 100 μ M. The media of cells were removed and the solutions were added for 72 h incubation at 37 °C.

At the end of the incubation, $10 \ \mu\text{L}$ of CCK8 solution were added to each well and incubated from 1 to 4 h. The absorbance (450 nm) was recorded using a microplate reader. Cell viability was determined according to the manufacturer's description. IC₅₀ values at 72 h were calculated using Graph Pad based on the viability curve data.

4. Characterization of new substrates

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.51 (dd, J = 7.8, 0.8 Hz, 1H), 8.37 (d, J = 8.6 Hz, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.70 (d, J = 7.3 Hz, 2H), 7.61-7.56 (m, 1H), 7.54-7.49 (m, 2H), 7.48-7.43 (m, 3H), 7.32 (t, J = 7.8 Hz, 2H), 2.88-2.77 (m, 2H), 2.61-2.53 (m, 1H), 2.48-2.43 (m, 1H), 1.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 198.4, 172.8, 149.7, 144.0, 140.9, 136.2, 133.2, 132.3, 131.3, 128.5, 128.1, 127.9, 126.2, 126.1, 126.0, 125.7, 122.9, 119.8, 115.7, 48.8, 35.8, 34.1, 29.7. HRMS m/z (ESI) calcd for C₂₅H₂₀N₂NaO₂⁺ [M+Na]⁺: 403.1417, found: 403.1426.

3ba

Light yellow oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.38 (dd, J = 17.7, 7.9 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 7.4 Hz, 2H), 7.47-7.41 (m, 3H), 7.34-7.31 (m, 4H), 2.86-2.76 (m, 2H), 2.57-2.51(m, 1H), 2.49-2.43 (m, 4H), 1.78 (s, 3H).¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 198.5, 173.0, 149.9, 144.0, 143.0, 141.0, 136.3, 133.2, 131.3, 129.2, 128.5, 127.9, 126.5, 126.1, 126.0, 125.5, 120.3, 119.7, 115.7, 48.7, 35.9, 34.2, 29.7, 22.0. **HRMS** m/z (ESI) calcd for C₂₆H₂₂N₂NaO₂⁺ [M+Na]⁺: 417.1573, found: 417.1580.

3ca

Light yellow solid, mp = 167.6-170.8 °C; ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.45 (d, *J* = 8.7 Hz, 1H), 8.34 (d, *J* = 7.9 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.48-7.39 (m, 3H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.04 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.99 (d, *J* = 2.4 Hz, 1H), 3.90 (s, 3H), 2.87-2.77

(m, 2H), 2.55-2.46 (m, 2H), 1.78 (s, 3H).¹³**C** NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.4, 171.8, 161.9, 148.8, 143.1, 142.0, 135.3, 132.1, 130.2, 127.5, 127.1, 126.9, 124.9, 124.2, 118.4, 114.6, 113.1, 110.4, 54.6, 47.9, 34.9, 33.1, 28.8. HRMS m/z (ESI) calcd for C₂₆H₂₂N₂NaO₃⁺ [M+Na]⁺: 433.1523, found: 433.1528.

3da

Light yellow oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.40 (dd, J = 37.7, 7.8 Hz, 2H), 7.84 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 7.6 Hz, 2H), 7.54-7.51 (m, 2H), 7.48-7.41 (m, 3H), 7.32 (t, J = 7.6 Hz, 2H), 2.86-2.74 (m, 2H), 2.63-2.56 (m, 1H), 2.53-2.43 (m, 1H), 1.80 (s, 3H), 1.37 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.4, 172.0, 155.1, 148.8, 142.8, 139.6, 135.2, 132.1, 130.2, 127.5, 126.9, 125.0, 124.9, 124.6, 124.5, 121.6, 119.1, 118.6, 114.7, 48.0, 35.0, 34.3, 33.1, 30.1, 28.5. **HRMS** m/z (ESI) calcd for C₂₉H₂₈N₂NaO₂⁺ [M+Na]⁺: 459.2043, found: 459.2051.

3ea

Light yellow oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.59-8.53 (m, 1H), 8.36 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.4 Hz, 1H), 7.71 (d, J = 7.6 Hz, 2H), 7.49-7.44 (m, 3H), 7.34 (t, J = 7.7 Hz, 2H), 7.24-7.21 (m, 2H), 2.88-2.78 (m, 2H), 2.53-2.47 (m, 2H), 1.79 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.0, 171.1, 164.3 (d, J = 255.2 Hz), 147.8, 142.9 (d, J = 7.6 Hz), 135.2, 132.2, 130.0, 127.9, 127.5, 126.9, 125.2, 124.9, 118.6, 115.2 (d, J = 22.7 Hz), 114.7, 112.2 (d, J = 22.7 Hz), 48.0, 34.9, 33.0, 28.5. **HRMS** m/z (ESI) calcd for C₂₅H₂₀FN₂O₂+ [M+H]⁺: 399.1503, found: 399.1508.

3fa + 3fa'

Light yellow oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.37 (d, J = 6.7 Hz, 1H), 8.33 (s, 0.79H), 7.84 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.47-7.38 (m, 5H), 7.32 (t, J = 7.7 Hz, 2H), 3.00-2.88 (m, 0.42H), 2.86-2.74 (m, 1.72H), 2.66 (s, 0.54H), 2.55 -2.41 (m, 4.5H), 1.91 (s, 0.55H), 1.77 (s, 2.55 H).¹³C **NMR** (151 MHz, CDCl₃) δ 197.5, 197.4, 172.6, 172.0, 149.1, 148.8, 143.9, 142.8, 137.1,137.0, 136.1, 135.5, 135.5, 135.2, 132.4, 132.1, 132.0, 130.2, 127.5, 127.4, 126.9, 126.8, 125.3, 125.2, 125.0, 124.9, 124.6, 124.5, 124.2, 121.5, 118.7, 118.6, 114.8, 114.7, 49.2, 47.5, 34.8,

33.4, 33.1, 31.8, 28.7, 25.3, 22.1, 19.9. **HRMS** m/z (ESI) calcd for $C_{26}H_{22}N_2NaO_2^+$ [M+Na]⁺: 417.1573, found: 417.1572.

3ga

Colorless oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.65 (s, 1H), 8.36 (d, J = 7.7 Hz, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.68 (t, J = 9.7 Hz, 3H), 7.48 (q, J = 7.2 Hz, 3H), 7.40 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 2.88-2.76 (m, 2H), 2.56-2.42 (m, 2H), 1.77 (s, 3H).¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.1, 171.2, 147.2, 142.8, 138.6, 135.2, 134.1, 132.2, 130.3, 127.8, 127.5, 126.9, 126.8, 125.2, 125.1, 123.8, 121.2, 119.0, 114.8, 47.7, 34.6, 33.0, 28.6. HRMS m/z (ESI) calcd for C₂₅H₂₀BrN₂O₂⁺ [M+H]⁺: 459.0703, found: 459.0710.

3ga'

Colorless oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.65 (dd, J = 7.8, 1.4 Hz, 1H), 8.40 (dd, J = 6.8, 1.7 Hz, 1H), 7.85 (td, J = 7.9, 1.5 Hz, 2H), 7.66 (dd, J = 8.3, 1.4 Hz, 2H), 7.51-7.44 (m, 3H), 7.34 (dt, J = 24.8, 8.0 Hz, 3H), 3.65-3.56 (m, 1H), 2.90-2.82 (m, 1H), 2.72-2.62 (m, 1H), 2.58-2.50 (m, 1H), 2.07 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.3, 171.6, 147.4, 138.6, 136.8, 135.2, 132.1, 130.1, 127.5, 127.4, 126.9, 125.6, 125.5, 125.1, 121.0, 118.7, 115.0, 49.7, 33.6, 30.9, 24.3. HRMS m/z (ESI) calcd for C₂₅H₁₉BrN₂NaO₂⁺ [M+Na]⁺: 481.0522, found: 481.0531.

3ha

Colorless oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.39-8.38 (m, 1H), 7.95-7.93 (m, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.57-7.53 (m, 1H), 7.50-7.45 (m, 3H), 7.36 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.27-7.23 (m, 1H), 2.88-2.79 (m, 2H), 2.58-2.46 (m, 2H), 1.80 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 198.2, 172.1, 160.5 (d, J = 262.7 Hz), 147.7 (d, J = 9.1 Hz), 144.2 (d, J = 3.0 Hz), 143.4, 136.2, 133.2, 132.8 (d, J = 9.1 Hz), 130.3, 128.5, 127.9, 126.3, 126.1, 122.0 (d, J = 3.0 Hz), 120.6, 115.9 (d, J = 21.1 Hz), 115.6, 113.3 (d, J = 10.6 Hz), 48.8, 36.0, 34.1, 29.9. **HRMS** m/z (ESI) calcd for C₂₅H₁₉FN₂NaO₂⁺ [M+Na]⁺: 421.1323, found: 421.1324.

Colorless oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.42-8.37 (m, 1H), 7.99-7.93 (m, 1H), 7.71 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 7.7 Hz, 1H), 7.52-7.43 (m, 5H), 7.33 (t, J = 7.7 Hz, 2H), 2.88-2.79 (m, 2H), 2.58-2.45 (m, 2H), 1.79 (s, 3H).¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 198.2, 172.0, 146.9, 143.8, 143.7, 136.2, 133.8, 133.3, 131.6, 131.5, 130.4, 128.5, 127.9, 126.5, 126.1, 124.9, 121.1, 120.8, 115.7, 49.0, 36.0, 34.1, 29.9. **HRMS** m/z (ESI) calcd for C₂₅H₁₉ClN₂NaO₂⁺ [M+Na]⁺: 437.1027, found: 437.1031.

Colorless oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.42-8.36 (m, 1H), 7.97-7.92 (m, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.49-7.45 (m, 3H), 7.38-7.31 (m, 3H), 2.88-2.78 (m, 2H), 2.58-2.44 (m, 2H), 1.79 (s, 3H).¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.2, 170.8, 146.1, 142.9, 142.6, 135.2, 134.5, 132.2, 130.5, 129.6, 127.5, 126.9, 125.4, 125.0, 124.5, 121.4, 120.6, 119.8, 114.6, 48.1, 35.0, 33.0, 28.9. **HRMS** m/z (ESI) calcd for C₂₅H₁₉BrN₂NaO₂⁺ [M+Na]⁺: 481.0522, found: 481.0527.

3ka

White solid, mp = 163.8-170.2 °C;. ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.49 (d, J = 8.0 Hz, 1H), 8.16 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.61 (s, 1H), 7.59-7.54 (m, 1H), 7.53-7.44 (m, 3H), 7.32 (t, J = 7.6 Hz, 2H), 2.90-2.72 (m, 2H), 2.58-2.51 (m, 1H), 2.48-2.41 (m, 7H), 1.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 198.4, 172.7, 148.8, 140.7, 136.3, 135.2, 135.1, 133.1, 132.0, 129.5, 128.5, 128.0, 127.9, 126.1, 126.0, 119.9, 116.0, 48.7, 35.9, 34.1, 29.6, 20.5, 20.4. HRMS m/z (ESI) calcd for C₂₇H₂₄N₂NaO₂⁺ [M+Na]⁺: 431.1730, found: 431.1736.

3ia

Yellow solid, mp = 176.2-180.1 °C; ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.50-8.44 (m, 2H), 7.89 (d, J = 3.3 Hz, 1H), 7.69 (d, J = 7.8 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.56-7.46 (m, 3H), 7.34 (t, J = 7.6 Hz, 2H), 2.87-2.75 (m, 2H), 2.59-2.45 (m, 2H), 1.80 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.1, 171.5, 150.1, 142.3, 140.1, 135.2, 132.2, 131.8, 129.2, 129.1, 128.5, 127.5, 127.2, 126.8, 125.4, 125.2, 121.3, 119.9, 116.1, 47.8, 34.9, 33.0, 28.4. HRMS m/z (ESI) calcd for $C_{25}H_{18}Cl_2N_2NaO_2^+$ [M+Na]+: 471.0638, found: 471.0645.

Colorless oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.43 (d, J = 7.8 Hz, 1H), 8.29 (d, J = 7.2 Hz, 1H), 7.76 (d, J = 7.1 Hz, 1H), 7.51-7.49 (m, 3H), 7.46-7.34 (m, 4H), 7.03 (d, J = 7.8 Hz, 2H), 2.77-2.66 (m, 2H), 2.50-2.45 (m, 1H), 2.37-2.31 (m, 1H), 2.24 (s, 3H), 1.71 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.0, 171.8, 148.7, 143.1, 142.9, 140.0, 132.8, 131.2, 130.3, 128.1, 127.1, 127.0, 125.1, 125.0, 124.9, 124.7, 122.0, 118.8, 114.7, 47.8, 34.9, 33.0, 28.6, 20.5. HRMS m/z (ESI) calcd for C₂₆H₂₂N₂NaO₂⁺ [M+Na]⁺: 417.1573, found: 417.1583.

3ac

Yellow oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.54 (d, J = 7.5 Hz, 1H), 8.37 (d, J = 7.3 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.74-7.71 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.54-7.44 (m, 4H), 6.99 (t, J = 8.6 Hz, 2H), 2.88-2.82 (m, 1H), 2.79-2.73 (m, 1H), 2.58-2.53 (m, 1H), 2.46-2.41 (m, 1H), 1.80 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 195.7, 171.8, 164.7 (d, J = 255.2 Hz), 148.6 , 142.9 (d, J = 15.9 Hz), 139.9, 131.7 (d, J = 2.9 Hz), 131.3, 130.2, 129.6 (d, J = 9.4 Hz), 127.1, 125.2, 125.1, 125.0,

124.8, 121.8 (d, J = 9.4 Hz), 118.8, 114.7 (d, J = 9.6 Hz), 114.5, 47.8, 34.7, 33.0, 28.7. **HRMS** m/z (ESI) calcd for C₂₅H₂₀FN₂O₂⁺ [M+H]⁺: 399.1503, found: 399.1513.

3ad

Colorless oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.54 (d, J = 7.5 Hz, 1H), 8.36 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.3 Hz, 1H), 7.64-7.58 (m, 3H), 7.54-7.50 (m, 2H), 7.49-7.43 (m, 2H), 7.29 (d, J = 8.3 Hz, 2H), 2.90-2.80 (m, 1H), 2.78-2.70 (m, 1H), 2.60-2.52 (m, 1H), 2.46-2.40 (m, 1H), 1.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 196.1, 171.7, 148.6, 142.8, 139.8, 138.6, 133.5, 131.3, 130.2, 128.4, 128.3, 127.9, 127.8, 127.1, 125.2, 125.1, 125.0, 124.8, 121.9, 118.8, 114.7, 47.7, 34.7, 33.1, 28.7. HRMS m/z (ESI) calcd for C₂₅H₁₉ClN₂NaO₂⁺ [M+Na]⁺: 437.1027, found: 437.1035.

3ae

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.50 (d, J = 7.5 Hz, 1H), 8.34 (d, J = 7.4 Hz, 1H), 7.85-7.81 (m, 1H), 7.80-7.75 (m, 2H), 7.65-7.57 (m, 3H), 7.54-7.49 (m, 2H), 7.49-7.42 (m, 2H), 2.90-2.83 (m, 1H), 2.82-2.75 (m, 1H), 2.60-2.52 (m, 1H), 2.50-2.44 (m, 1H), 1.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 196.0, 171.7, 148.5, 143.1, 139.6, 138.1, 131.4, 131.3, 130.2, 127.3, 127.2, 125.2, 125.1, 125.0, 124.8, 122.0, 118.9, 116.8, 115.4, 114.7, 47.7, 34.4, 33.5, 28.8. HRMS m/z (ESI) calcd for C₂₆H₂₀N₃O₂⁺ [M+H]⁺: 406.1550 found: 406.1553.

3af

Light yellow oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.58 (d, J = 8.5 Hz, 1H), 8.38-8.34 (m, 1H), 8.17 (d, J = 8.1 Hz, 2H), 7.90-7.83 (m, 3H), 7.62 (t, J = 7.5 Hz, 1H), 7.56-7.52 (m, 2H), 7.51-7.44 (m, 2H), 2.92-2.79 (m, 2H), 2.62-2.50 (m, 2H), 1.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 196.4, 171.7, 148.5, 139.7, 137.8, 133.4 (q, J = 32.6), 131.4, 130.2, 127.3, 127.2, 125.2, 125.0 (d, J = 19.6 Hz), 124.8, 124.5 (q, J = 3.8 Hz), 122.4 (q, J = 273.0 Hz), 121.8, 118.8, 114.7, 47.7, 34.5, 33.5, 28.7. **HRMS** m/z (ESI) calcd for C₂₆H₂₀F₃N₂O₂⁺ [M+H]⁺: 449.1471, found: 449.1479.

 NO_2

Colorless oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.58 (d, J = 1.5 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.17 (d, J = 8.2 Hz, 2H), 7.86 (t, J = 9.9 Hz, 3H), 7.62 (t, J = 7.5 Hz, 1H), 7.55-7.45 (m, 4H), 2.91-2.80 (m, 2H), 2.61-2.51 (m, 2H), 1.81 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 195.8, 171.6, 149.3, 148.4, 139.7, 139.5, 131.6, 130.0, 127.9, 127.4, 125.6, 125.4, 125.0, 124.9, 123.1, 122.7, 118.7, 114.7, 47.7, 34.4, 33.8, 28.8. **HRMS** m/z (ESI) calcd for C₂₅H₂₀N₃O₄⁺ [M+H]⁺: 426.1448, found: 426.1453.

3ah

Colorless oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.52 (d, J = 7.8 Hz, 1H), 8.38-8.34 (m, 1H), 7.86-7.82 (m, 1H), 7.67 (t, J = 1.8 Hz, 1H), 7.62-7.57 (m, 1H), 7.56-7.49 (m, 3H), 7.48-7.41 (m, 3H), 7.26 (t, J = 1.5 Hz, 1H), 2.90-2.82 (m, 1H), 2.80-2.71 (m, 1H), 2.59-2.52 (m, 1H), 2.49-2.40 (m, 1H), 1.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 196.1, 171.7, 148.5, 142.8, 139.8, 136.7, 133.9, 132.1, 131.3, 130.2, 128.8, 127.2, 126.9, 125.3, 125.1, 125.0, 124.9, 124.8, 121.8, 118.8, 114.7, 47.7, 34.5, 33.3, 28.8. HRMS m/z (ESI) calcd for C₂₅H₁₉ClN₂NaO₂⁺ [M+Na]⁺: 437.1027, found: 437.1037.

3ai

White solid, mp = 170.2-175.8 °C; ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.53 (d, *J* = 7.7 Hz, 1H), 8.36 (dd, *J* = 7.3, 1.8 Hz, 1H), 7.85 (d, *J* = 7.2 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.54-7.51 (m, 2H), 7.48-7.42 (m, 2H), 7.26-7.19 (m, 3H), 7.00 (dt, *J* = 7.0, 2.3 Hz, 1H), 3.76 (s, 3H), 2.88-2.82 (m, 1H), 2.80-2.74 (m, 1H), 2.58-2.52 (m, 1H), 2.49-2.42 (m, 1H), 1.79 (s, 3H).¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.2, 171.7, 158.7, 148.6, 139.9, 136.6, 131.3, 130.2, 128.5, 127.1, 125.3, 125.1, 125.0, 124.8, 121.7, 119.6, 118.7, 118.6, 114.7, 111.1, 54.4, 47.8, 34.9, 33.3, 28.7. HRMS m/z (ESI) calcd for C₂₆H₂₂N₂NaO₃⁺ [M+Na]⁺: 433.1523, found: 433.1516.

3aj

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.53 (d, J = 7.7 Hz, 1H), 8.37 (d, J = 1.5 Hz, 1H), 7.85 (d, J = 1.5 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.56-7.49 (m, 2H), 7.48-7.42 (m, 2H), 7.30-7.25 (m, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 2.85-2.78 (m, 1H), 2.74-2.66 (m, 1H), 2.57-2.51 (m, 1H), 2.44-2.38 (m, 1H), 2.37 (s, 3H), 1.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 201.1, 171.8, 148.6, 142.7, 140.0, 137.1, 136.0, 131.3, 130.9, 130.4, 130.2, 127.4, 127.1, 125.2, 125.1, 124.8, 124.6, 121.8, 118.7, 114.7, 47.7, 35.8, 35.0, 28.6, 20.3. HRMS m/z (ESI) calcd for $C_{26}H_{22}N_2NaO_2^+$ [M+Na]⁺: 417.1573, found: 417.1578.

3ak

Yellow solid, mp = 174.2-179.5 °C; ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.57 (t, *J* = 8.6 Hz, 1H), 8.37 (d, *J* = 7.7 Hz, 1H), 7.87-7.85 (m, 1H), 7.60 (d, *J* = 6.1 Hz, 1H), 7.55-7.51 (m, 2H), 7.49-7.44 (m, 2H), 7.30 (d, *J* = 1.9 Hz, 1H), 7.23 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 2.88-2.83 (m, 1H), 2.77-2.72 (m, 1H), 2.56-2.51 (m, 1H), 2.43-2.38 (m, 1H), 1.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 197.0, 172.8 153.3, 149.7, 148.9, 143.9, 141.0, 132.3, 131.3, 129.5, 128.1, 126.2, 126.1, 126.0, 125.7, 122.9, 122.7, 119.8, 115.7, 109.9, 109.8, 68.0, 56.0, 55.9, 48.9, 36.4, 33.7, 28.7, 25.6. HRMS m/z (ESI) calcd for C₂₇H₂₅N₂O₄⁺ [M+H]⁺: 441.1809, found: 441.1817.

3al

Colorless oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.52 (d, *J* = 7.4 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 7.1 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.56-7.48 (m, 2H), 7.48-7.41 (m, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 6.95 (s, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 2.84-2.76 (m, 1H), 2.73-2.65 (m, 1H), 2.56-2.49 (m, 1H), 2.43-2.37 (m, 1H), 2.37 (s, 3H), 2.26 (s, 3H), 1.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 200.3, 171.8, 148.6, 141.1, 140.0, 137.7, 133.0, 131.8, 131.2, 130.2, 128.0, 127.0, 125.2, 125.1, 125.0, 124.9, 124.7, 118.8, 114.7, 47.8, 35.5, 35.2, 28.6, 20.5, 20.3. HRMS m/z (ESI) calcd for C₂₇H₂₄N₂NaO₂⁺ [M+Na]⁺: 431.1730, found: 431.1739.

3am

Light yellow oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.49 (d, J = 8.5 Hz, 1H), 8.33 (d, J = 7.4 Hz, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.57 (td, J = 7.6, 1.5 Hz, 1H), 7.51-7.46 (m, 2H), 7.46-7.39 (m, 2H), 3.98-3.91 (m, 1H), 3.88-3.81 (m, 1H), 3.77-3.65 (m, 2H), 3.11-3.02 (m, 2H), 2.81-2.73 (m, 1H), 1.76 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 172.0, 168.5, 168.4, 149.5, 143.9, 139.9, 131.9, 131.3, 128.2, 126.5, 126.1, 126.0, 125.7, 123.0, 119.8, 115.7, 61.7, 61.6, 48.7, 47.8, 39.3, 30.3, 13.7, 13.6. HRMS m/z (ESI) calcd for C₂₄H₂₄N₂NaO₅⁺ [M+Na]⁺: 443.1577, found: 443.1587.

Light yellow oil. ¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.49 (d, J = 7.6 Hz, 1H), 8.36 (d, J = 7.1 Hz, 1H), 7.83 (dd, J = 7.0, 1.5 Hz, 1H), 7.60 (t, J = 8.2 Hz, 1H), 7.53-7.48 (m, 2H), 7.47-7.41 (m, 2H), 3.94 (q, J = 7.1 Hz, 2H), 2.80-2.71 (m, 1H), 2.46-2.36 (m, 1H), 2.10-1.99 (m, 1H), 1.92-1.84 (m, 1H), 1.77 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H).¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 172.6, 172.1, 149.6, 144.0, 140.6, 132.1, 131.3, 128.1, 126.2, 126.1, 126.0, 125.7, 123.0, 119.9, 115.7, 60.6, 48.7, 36.9, 30.2, 29.1, 14.0. **HRMS** m/z (ESI) calcd for C₂₁H₂₁N₂O₃⁺ [M+H]⁺: 349.1547, found: 349.1542.

3ao

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.51 (dd, J = 7.8, 1.2 Hz, 1H), 8.36 (dd, J = 7.0, 1.8 Hz, 1H), 7.84 (dd, J = 6.9, 1.6 Hz, 1H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 7.52-7.50 (m, 1H), 7.48-7.42 (m, 3H), 3.94-3.75 (m, 2H), 3.45-3.38 (m 1H), 3.09-3.01 (m, 1H), 1.76 (s, 3H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 171.4, 163.5 (t, J = 31.7 Hz), 149.3, 144.0, 138.7, 131.5, 131.3, 128.3, 126.9, 126.2, 126.0, 125.7, 122.7, 119.9, 115.7, 114.3 (t, J = 250.7 Hz), 63.1, 45.2 (d, J = 5.3 Hz), 44.4 (d, J = 22.7 Hz), 31.3, 13.6. HRMS m/z (ESI) calcd for C₂₁H₁₉F₂N₂O₃⁺ [M+H]⁺: 385.1358, found: 385.1352.

3ap

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.62-8.46 (m, 1H), 8.36 (dd, J = 19.5, 7.4 Hz, 1H), 7.84 (p, J = 3.6 Hz, 1H), 7.63-7.38 (m, 5H), 3.80-3.60 (m, 1H), 3.45-3.28 (m, 1H), 3.02-2.90 (m, 0.50 H), 2.67-2.58 (m, 0.59 H), 2.56-2.48 (m, 0.60H), 2.20-2.04 (m, 1.65H), 1.71 (s, 3H), 1.00 (d, J = 7.0 Hz, 1.66H), 0.98 (d, J = 7.1 Hz, 1.31H), 0.92 (t, J = 7.1 Hz, 1.64H), 0.74 (t, J = 7.2 Hz, 1.36 H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 175.4, 175.2, 172.9, 172.3, 149.7, 149.6, 141.2, 140.2, 132.1, 132.8, 131.2, 128.0, 127.9, 127.1, 126.4, 126.1, 126.0, 125.9, 125.8, 125.7, 125.6, 122.7, 119.7, 119.6, 115.8, 115.7, 60.5, 60.4, 48.8, 48.5, 45.3, 45.0, 40.0, 36.3, 30.7, 30.5, 18.8, 18.7, 13.7, 13.4. HRMS m/z (ESI) calcd for C₂₂H₂₃N₂O₃⁺ [M+H]⁺: 363.1703, found: 363.1714.

5. ¹H NMR and ¹³C NMR spectra for new substrates

3aa

3ca

S25

3ab

3ah

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

3ao

