1

Supplementary Information

2 Tuning Brønsted and Lewis Acidity on Phosphated Titanium Dioxides

3 for Efficient Conversion of Glucose to 5-hydroxymethylfurfural

- 4 Siripit Songtawee,^{ab} Bunyarat Rungtaweevoranit,^a Chalida Klaysom,^{bc}
- 5 and Kajornsak Faungnawakij *a
- 6 ^a NanoCatalysis and Molecular Simulation Research Group, National Nanotechnology
- 7 Center (NANOTEC), National Science and Technology Development Agency (NSTDA),
- 8 Pathumthani 12120, Thailand
- 9 ^b Center of Excellence in Particle and Material Processing Technology, Department of
- 10 Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,
- 11 Thailand
- 12 ^c Bio-Circular-Green Economy Technology & Engineering Center (BCGeTEC), Department
- 13 of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,
- 14 Thailand
- 15 * Corresponding author: Tel.: +66 2 564 7100, Fax: +66 2 564 6981,
- 16 E-mail address: kajornsak@nanotec.or.th
- 17
- 18
- 19

20

23 Fig. S1 The μ -EDXRF spectra of (a) fresh and (b) spent of 30P-TiO₂ catalyst

25 Table S1 The elemental analysis of fresh and spent of $30P-TiO_2$ catalysts by μ -EDXRF

Element (%)	Fresh 30P-TiO ₂	Spent 30P-TiO ₂
Р	15.2	12.6
Ti	84.8	80.1
Na	-	5.7