Highly sensitive optical temperature sensing based on pump-power-dependent upconversion luminescence in LiZnPO₄: Yb³⁺–Er³⁺/Ho³⁺ phosphors.

Kamel Saidi^{1*}, Wajdi Chaabani², Mohamed Dammak¹.

¹ Laboratoire de Physique Appliquée, Groupe des Matériaux Luminescents, Faculté des Sciences de Sfax, Département de Physique, Université de Sfax, BP, 1171, Sfax, Tunisie.

² Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay 91405, France.

*corresponding author: Kamel Saidi, saidikamel494@gmail.com

Fig. S1 (a) SEM microscopic morphology image, (b) EDS spectrum, and (c) elemental mapping graphs of $LiZnPO_4$ co doped $0.5\% Er^{3+}/5\% Yb^{3+}$.

Fig. S2 (a) SEM microscopic morphology image, (b) EDS spectrum, and (c) elemental mapping graphs of LiZnPO₄ co doped 0.5%Ho³⁺/3%Yb³⁺.

Fig. S3: Diffuse reflectance spectra (DRS) of LiZnPO4 Er³⁺, Ho³⁺/Yb³⁺.

Fig. S4. Decay curves of 521 nm emissions of LiZnPO₄:0.5% Er^{3+}/x^{0} Yb³⁺ (x = 1, 3, 5 and 7) samples ($\lambda_{ex} = 980$ nm).

Fig. S5. Decay curves of 670 nm emissions of LiZnPO₄: 0.5% Ho^{3+/} y%Yb³⁺ (y = 1, 3, 5 and 7) samples (λ_{ex} = 980 nm).

Fig. S6 (a) Uc emission spectra of LiZnPO₄: 5% Yb³⁺, 0.5% Er^{3+} excited under various temperatures, (b-e) dependence of R on absolute temperature. (c-f) dependence of Ln(R)

as a function of 1/T.