# **Supporting Information**

Self-assembly of monohydroxy Terpenoid Lupeol yielding nano-Fibers, Sheet and Gel: Environmental and drug Delivery application

Saikat Kumar Panja, Soumen Patra, Braja Gopal Bag\*

**Department of Chemistry and Chemical Technology** 

Vidyasagar University

Midnapore, 721102, West Bengal, India

Email: brajagb@gmail.com

| Table of contant                                                 | Pages      |
|------------------------------------------------------------------|------------|
| 1. Figure S1, S2: Energy minimized structure of 1                | <b>S</b> 3 |
| 2. Figure S3: $T_{gel}$ vs. Concentration Plots                  | <b>S</b> 4 |
| 3. Figure S4: ln K vs 1/T (K) plot of <b>1</b>                   | S5         |
| 4. Figure S5: OPM images of the self-assemblies of <b>1</b>      | <b>S</b> 6 |
| 5. Figure S6: AFM images of the self-assemblies of <b>1</b>      | <b>S</b> 6 |
| 6. Figure S7: FESEM images of the self-assemblies of 1           | <b>S</b> 7 |
| 7. FigureS 8: HRTEM images of the self-assemblies of 1           | <b>S</b> 8 |
| 8. Figure S9: Epifluorescence Microscopy                         | <b>S</b> 8 |
| 9. Figure S10: Rheology study of the gels                        | <b>S</b> 9 |
| 10. Figure S11: FTIR spectra of xerogels of 1                    | S10        |
| 11. Figure S12- S16: Possible modes of self-assembly of <b>1</b> | S11- S13   |
| 12. Experimental section                                         | S13-S14    |

## 1. Energy minimized structure of lupeol



Figure S1: Energy minimized structure of Lupeol 1 using MMX force field as implemented in PCMODEL version 9.2 (Serena software)<sup>®</sup>.



Figure S2: Energy minimized structure of Lupeol 1 obtained from DFT using (Gaussian 09 software)<sup>®</sup>.

#### 2. T<sub>gel</sub> vs. Concentration Plots:



#### 3. Calculation the thermodynamic parameter:

#### **Calculation:**

The thermo-reversibility of a gel melting can be expressed as:

 $\text{Gel} \rightarrow \text{sol}$ 

The equilibrium constant  $(K_{eqm})$  for gel to sol transition:

 $K_{eqm} = [Gelator]/[Gel]$ 

Assuming unit activity of the gel, the equilibrium constant can be expressed as:

 $K_{eqm} = [Gelator]$ 

The Gibbs free energy ( $\Delta G^{\circ}$ ) change during gel melting can be expressed as:

 $\Delta G^{\circ} = -RTlnK_{eqm} = \Delta H^{\circ} - T\Delta S^{\circ}$ , Hence,  $lnK_{eqm} = -\Delta^{\circ}/R$ .  $(1/T) + \Delta S^{\circ}/R$ 

The gel melting temperature  $(T_{gel})$  increases with increasing concentration of the "solutes". A plot of lnK vs 1/T allowed us to calculate the thermodynamic parameters.





#### 4. OPM images of the self-assemblies



Figure S5: OPM images of self-assemblies of 1: (a,b) THF (1.5% w/v, 35.2 mM), (c) cyclohexane (1.5 % w/v, 35.2 mM), (d) DMF-H<sub>2</sub>O (1:1, 2.0 % w/v, 46.9 mM), (e,f) n-hexane (1.5 %w/v, 35.2 mM), (g,h) n-heptane (1.5 %w/v, 35.2 mM)

## 5. AFM images of the self-assemblies



Figure S6: AFM micrographs of dried self-assemblies of 1 : (a) n-heptane (0.12%w/v), (b) odichlorobenzene(0.15 %w/v), (c) DMF-H<sub>2</sub>O (1:1, 0.12 % w/v)

# 6. FESEM images of the self-assemblies



Figure S7: FESEM images of self-assemblies of 1: (a,b) DMF (1.5 %w/v), (c,d) EtOH (1.25 %w/v).

7. HRTEM images of the self-assembled twisted fibers



Figure S8: HRTEM images of self-assemblies of 1: (a,b) n-heptane DMF (0.8 %w/v).

8. Epifluorescence microscopy of dye entraped gel



Figure S9: Epifluorescence microscopy images of the adsorbed fluorophores by the gels of **1** in DMSO-water (2:1): (a-c) adsorbed rhodamine-B (0.2 mM), (d-f) adsorbed CF (0.2 mM), (g-i) adsorbed doxorubicin (0.15 mM) after release respectively. Grey, green and red images are under normal, blue, green lights respectively.

## 9. Rheology of gels



Figure S10 : Rheological amplitude stress Sweep experiments of the gels of 1 (a-c) in DMSO-H<sub>2</sub>O (2:1 v/v), (d-f) in DMF 2.5 %w/v, (g-i) in n -octane at concentration 2.0 % w/v, 2.5 %w/v, 3.5 % w/v, respectively.

## **10. FTIR spectrum of Lupeol**



Figure S11: FTIR spectra of xerogel of 1 (a) butanol (5 % w/v) and o-dichlorobenze (4 % w/v), (b) n-hexane (1.7 % w/v) and n-octane (2 % w/v) respectively

### 11. Various possible modes of assembly of lupeol



Fig. S12: Schematic representation of two interacting lupeol molecules within van der Waals contact and facing opposite ( $\alpha$ - $\beta$ ) to each other



Fig. S13: Schematic presentation of two interacting lupeol molecules within van der Waals contact and facing ( $\alpha$ - $\alpha$ ) to each other



Fig. S14: Schematic representation of two interacting lupeol molecules within van der Waals contact shown as terpenoid  $\beta$ -face facing each other



Fig. S15: Schematic representation of two interacting lupeol molecules within H-bonding





Fig. 16 Schematic representation of interacting lupeol molecules forming selfassembled architecture via within van der Waals interaction and contact and Hbonding

#### 12. Experimental

#### 12.1 Materials.

All solvents used for purification purposes were commercial grade and were distilled before use. The liquids used for gelation studies were laboratory-grade reagents and dried using standard literature methods and distilled before use. 12.2 Method of Sample Preparation and Characterization.

For self-assembly studies, 2–5 mg of compound 1 contained in a vial (1 cm id) was heated with a liquid with continuous magnetic stirring over a hot plate until a clear solution was obtained. The solution was then allowed to cool at room temperature (24-25)°C). When the material did not flow as observed by turning the vial upside down we called it a gel. The selfassemblies have been characterized by various spectroscopic and microscopic techniques. Scanning electron microscopy samples were prepared by placing a dilute solution of the sample on a aluminium foil and then allowing it to dry initially in air for 24 h and then under reduced pressure for 12 h and then sputter coated with Au before use for 120 s and studied using a Zeiss field-emission scanning electron microscope (FESEM). For optical microscopy, an aliquot of sample was taken on a glass plate and covered with a coverslip and observed both under normal and polarized light using a Nikon LV100 POL microscope. TEM images of the self-assemblies were recorded on dilute solution samples placed on 300 mesh carbon coated copper grids and dried at ambient temperatures in the air for 24 h and then under reduced pressure for 24 h and studied using JEOL transmission electron microscopy. For wide-angle X-ray scattering (WAXS) experiment, a thin layer of self-assemblies was placed on a glass plate and the volatiles were removed initially in air and then under reduced pressure and the diffractions were recorded in a Bruker X-ray diffractometer at 25 °C using Co-Ka filament ( $\lambda = 1.789$  Å). For the measurement of diffraction pattern of a powder sample, it was taken directly in the diffractometer cell and measured. For FTIR spectra of the neat powder and self-assemblies were analyzed by using a PerkinElmer Spectrum.