Supporting Information

1. Experimental Procedures

1-1. Synthesis of theophylline ligand
1-2. Preparation of nanostructured palladium-theophylline flowers by complexation-driven self-assembly

1-3. Suzuki-Miyaura cross-coupling reactions (Figure S1)
2. Results and Discussion

2-1. Characterization data of products
BTC_{7} :
NMR assays (Figure S2, S3)
$\mathrm{BTC}_{3} \sim \mathrm{BTC}_{8}$ (except BTC_{7})
NMR assays (Figure S4-1 ~ Figure S12-2)
2-2. Nanostructured palladium/theophylline complex (PdBTC7):
Elementary analysis (Table S1)
Diffuse reflectance UV-Vis spectroscopy (Figure S13)
FT-IR spectroscopy (Figure S14)
${ }^{13} \mathrm{C}-\mathrm{CP} / \mathrm{MAS}$ NMR (Figure S15)
XPS spectra (Figure S16)
SEM images of the complexes PdBTCn ($\mathrm{n}=3,4,5,6,7,8,9,10,11$, and 12) (Figure S17)
X-ray powder diffraction (XRD) measurements (Figures S18, S19)
2-3. Catalysis of PdBTC_{n} in Suzuki-Miyaura coupling reactions (Table S2)
2-4. Recyclability tests of PdBTC_{7} for the Suzuki-Miyaura coupling reactions (Figures S20-S23, Table S3)
$2-5$. Hot filtrate test
3. References

1. Experimental Procedures

1-1. Synthesis of theophylline ligand

Ligand molecules containing theophylline as a chelate agent used in this study were prepared modifying literature procedure.[1] The bis-theophylline alkane were synthesized from the reaction between theophylline and alkyl-dibromide in the presence of potassium carbonate in methanol at $70{ }^{\circ} \mathrm{C}$ according to the following reaction(Eq. (1)).

$$
\begin{gathered}
2 \text { Theophylline }+\mathrm{Br}-\mathrm{R}-\mathrm{Br} \rightarrow \text { Theophylline- } \mathrm{R}-\text { Theophylline }+\mathrm{HBr} \quad(1) \\
\mathrm{R}=\text { propyl-, butyl-, pentyl-, hexyl-, heptyl-, octyl-, nonyl-, decanyl-, undecanyl, } \\
\text { dodecanyl- }
\end{gathered}
$$

Typical example of synthesis of bisditheophyllineheptan $\left(\mathrm{BTC}_{7}\right)$ was described as follows. To a 300 mL eggplant type flask equipped with a condenser, methanol (solvent, 200 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (base, $3.46 \mathrm{~g}, 25 \mathrm{mmol}$), and theophylline ($3.96 \mathrm{~g}, 22 \mathrm{mmol}$) were added, and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ until solution became clear. Then, dibromoheptane ($\mathrm{C} 7: 2.63 \mathrm{~g}, 10 \mathrm{mmol}$) was added and the mixture was refluxed at 80 ${ }^{\circ} \mathrm{C}$ for 96 h . After that, the reaction mixture was evaporated to remove methanol. Then the product was extracted from chloroform/water. After concentration the chloroform solution, the product $\left(\mathrm{BTC}_{7}\right)$ was recrystallized in ethyl acetate by which white powders were obtained.

1-2. Preparation of nanostructured palladium-theophylline flowers by complexation-driven self-assembly

Complexation of BTC_{7} and palladium (II) chloride was performed from a water-ethanol mixture. The ethanol solution of $\mathrm{BTC}_{7}\left(5.0 \mathrm{mmol} \mathrm{dm}^{-3}\right)$ was prepared by dissolving 570 mg of BTC_{7} into 250 mL of analytical grade ethanol. The aqueous solution of $\mathrm{PdCl}_{2}(5.0$ $\mathrm{mmol} \mathrm{dm}{ }^{-3}$) was prepared by dissolving palladium (II) chloride in 1.0 M hydrochloric acid. Then, equal volumes $(250 \mathrm{~mL})$ of both same concentration solutions were mixed and left 1 month. Yellow precipitates $\left(\mathrm{PdBTC}_{7}\right)$ formed spontaneously were filtrated and washed by water and ethanol alternatively, and dried at ambient condition.

1-3. Suzuki-Miyaura cross-coupling reactions

In a typical reaction, 0.317 mg of $\mathrm{PdBTC}_{7}(\mathrm{MW}=633.83)$ (this equates to $0.1 \mathrm{~mol} \% \mathrm{Pd}$ relative to bromobenzene) was exactly weighed by precision balance (Sartorius cubis MSE6.6S-000-DM) and was put into a $6 \mathrm{~cm}^{3}$ screw top tube. And then 0.6 mmol of phenylboronic acid (TCI) and 1.0 mmol of potassium carbonate (FUJIFILM Wako, for organic synthesis) were added. The screw top tube was filled with $5 \mathrm{~cm}^{3}$ of water:ethanol (1:1 in volume) and sonicated for a short period of time (ca., 1-2 min). After addition of 0.5 mmol of 4-bromobenzene, the tube was then placed in a thermostatic water bath by cool pump to $20^{\circ} \mathrm{C}$, and stirred for 2 h . Then the reaction mixture was transferred into a $100 \mathrm{~cm}^{3}$ screw top tube by use of $20 \mathrm{~cm}^{3}$ of water, then added $2 \mathrm{~cm}^{3}$ of CDCl_{3} (Eurisotop, $99.80 \% \mathrm{D}, 0.03 \% \mathrm{TMS}$). The mixture was vigorously stirred and the CDCl_{3} layer was dried over a small amount of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solution of CDCl_{3} was subjected to 1 H NMR to determine the yield. To check the reproducibility of the coupling reaction, we repeated the same reaction two times.

The following chart (Fig. S1) is an example of estimating the yield of biphenyl in the catalytic reaction for 30 min (see entry-11 in Table 1) by ${ }^{1} \mathrm{H}$ NMR.

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectra of reaction mixture (a, reaction for 30 min), bromobenzene (b) and biphenyl (c) $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$. In the spectrum of (a), the yield of the biphenyl was
estimated from the integration ratio of two peaks around $7.585 \mathrm{ppm}(2 \times 2 \mathrm{H}$, orthoproton on biphenyl) and around $7.485 \mathrm{ppm}(2 \mathrm{H}$, ortho-proton on bromobenzene).

2. Results and Discussion

2-1. Characterization data of products

$B^{1} C_{7}$:

NMR assays

White powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): ~ \delta(\mathrm{ppm})=7.53(\mathrm{~s}, 2 \mathrm{H}$, imidazole), 4.26 (t, J=7.8 Hz, 4H), 3.59 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.41 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 1.86 (m, 4H), 1.39 (m, $2 \mathrm{H}), 1.32(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=155.0,151.6,148.9$, 140.7, 106.9, 47.1, 30.7, 29.7, 28.3, 27.9, 26.1.

Fig. S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{7}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{7}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.
BTC_{3} : White powder. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}=5: 1 \mathrm{v} / \mathrm{v}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.35$ ($\mathrm{s}, 2 \mathrm{H}$, imidazole), 2.87 (t, J=9.0 Hz, N-CH2, 4H), 1.79 (s, 6H, N-CH3), 1.52 (s, 6H, NCH_{3}), 0.85 (quint, J=9.0 Hz, $-\mathrm{CH}_{2}, 2 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}=5: 1 \mathrm{v} / \mathrm{v}, 150.92 \mathrm{MHz}$, $298 \mathrm{~K}): \delta(\mathrm{ppm})=153.9,150.5,140.3,136.5,106.3,45.2,31.1,29.0$.

Fig. S4-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{3}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}, 600 \mathrm{MHz}\right)$.

Fig. S4-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{3}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}, 150 \mathrm{MHz}\right)$.
BTC_{4} : White powder. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=5: 1 \mathrm{v} / \mathrm{v}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta(\mathrm{ppm})=7.65\left(\mathrm{~s}, 2 \mathrm{H}\right.$, imidazole), $4.34\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}, 4 \mathrm{H}\right), 3.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, 3.41 (s, $\left.6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.92\left(\mathrm{~m},-\mathrm{CH}_{2}, 4 \mathrm{H}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=5: 1 \mathrm{v} / \mathrm{v}, 150.92 \mathrm{MHz}\right.$, 298K): $\delta(\mathrm{ppm})=155.0,151.5,148.8,141.2,106.7,46.1,29.6,27.9,27.4$.

Fig. S5-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{4}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$.

Fig. S5-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{4}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$.
BTC_{5} : White powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta(\mathrm{ppm})=7.57(\mathrm{~s}, 2 \mathrm{H}$, imidazole), 4.28 (t, J=6.0 Hz, N-CH2, 4H), 3.59 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.41 (s, 6H, N-CH3), 1.95 ($\mathrm{m},-\mathrm{CH}_{2}, 4 \mathrm{H}$), 1.37 ($\mathrm{m},-\mathrm{CH}_{2}, 2 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=155.0,151.6,148.9,140.8,106.8,46.6,30.1,29.7,27.9,22.9$.

Fig. S6-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{5}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S6-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{5}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.
BTC_{6} : White powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.53(\mathrm{~s}, 2 \mathrm{H}$, imidazole), 4.27 ($\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}, 4 \mathrm{H}$), 3.59 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.40 (s, 6H, N-CH3), 1.88 ($\mathrm{m},-\mathrm{CH}_{2}, 4 \mathrm{H}$), 1.37 ($\mathrm{m},-\mathrm{CH}_{2}, 4 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=155.0,151.6,148.9,140.7,106.8,47.0,30.6,29.7,27.9,25.7$.

Fig. S7-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{6}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S7-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{6}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.
BTC_{8} : White powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.54(\mathrm{~s}, 2 \mathrm{H}$, imidazole), 4.27 (t, J=7.8 Hz, N-CH2, 4H), 3.59 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.41 (s, 6H, N-CH3), 1.86 ($\mathrm{m},-\mathrm{CH}_{2}, 4 \mathrm{H}$), 1.32 ($\mathrm{m},-\mathrm{CH}_{2}, 8 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=155.0,151.6,148.9,140.7,106.9,47.1,30.7,29.7,28.7,27.9,26.1$.

Fig. S8-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{8}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S8-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{8}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.
BTC_{9} : White powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.53(\mathrm{~s}, 2 \mathrm{H}$, imidazole), 4.27 (t, J=7.2 Hz, N-CH2, 4H), 3.59 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.41 (s, 6H, N-CH3), 1.86 ($\mathrm{m},-\mathrm{CH}_{2}, 4 \mathrm{H}$), $1.30\left(\mathrm{~m},-\mathrm{CH}_{2}, 10 \mathrm{H}\right),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta(\mathrm{ppm})=155.0,151.6,148.8,140.7,106.9,47.2,30.8,29.7,29.1,28.8,27.9,26.2$.

Fig. S9-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{9}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S9-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{9}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.
BTC_{10} : White powder. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.51(\mathrm{~s}, 2 \mathrm{H}$, imidazole), $4.27\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}, 4 \mathrm{H}\right), 3.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.41\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $1.86\left(\mathrm{~m},-\mathrm{CH}_{2}, 4 \mathrm{H}\right), 1.30-1.25\left(\mathrm{~m},-\mathrm{CH}_{2}, 12 \mathrm{H}\right),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta(\mathrm{ppm})=155.0,151.6,148.8,140.7,106.9,47.2,30.8,29.7,29.2,28.9,27.9,26.3$.

Fig. S10-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{10}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S10-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{10}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.
BTC_{11} : White powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.54(\mathrm{~s}, 2 \mathrm{H}$, imidazole), 4.28 (t, J=7.8 Hz, N-CH2, 4H), 3.60 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.42 (s, 6H, N-CH3), 1.87 ($\mathrm{m},-\mathrm{CH}_{2}, 4 \mathrm{H}$), 1.31-1.25 ($\mathrm{m},-\mathrm{CH}_{2}, 14 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=155.1,151.7,148.9,140.7,106.9,47.2,30.8,29.7,29.3,28.9,27.9,26.3$.

Fig. S11-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{11}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S11-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{11}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.
BTC_{12} : White powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.17 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.53(\mathrm{~s}, 2 \mathrm{H}$, imidazole), 4.27 (t, J=8.4 Hz, N-CH2, 4H), 3.59 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.41 (s, 6H, N-CH3), 1.86 ($\mathrm{m},-\mathrm{CH}_{2}, 4 \mathrm{H}$), 1.30-1.23 (m, $-\mathrm{CH}_{2}, 16 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150.92 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=155.0,151.6,148.8,140.7,106.9,47.2,30.8,29.7,29.3,28.9,27.9,26.3$.

Fig. S12-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{BTC}_{12}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Fig. S12-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BTC}_{12}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.

2-2. Nanostructured palladium/theophylline complex $\left(\mathrm{PdBTC}_{7}\right)$:

Elementary analysis

The component of PdBTC_{7} was examined by elemental analysis and thermogravimetric analysis (TGA). $\mathrm{PdBTC}_{7}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Pd}\right)$: calcd (\%): C 39.79; H 4.45; N 17.68. Found: C 39.53; H 4.73; N 17.78. The weight loss from TGA-curve in the temperature range from 100 to $800^{\circ} \mathrm{C}$ was assigned to the organic fraction and chloride. The residue was 16.48%, which is good agreement with the theoretical value of Pd content (16.79\%).

Table S1. Components of PdBTC_{7} determined by elementary analysis and TGA.

Elements a, b	Calculated values (\%)	Measured values (\%)
C	39.79	39.53
H	4.45	4.73
N	17.68	17.78
Pd	16.79	16.48

[a] C, H, N contents were calculated by elemental analysis. [b] Pd content was determined by TG analysis.

Diffuse reflectance UV-Vis spectroscopy

The complex flowers formed once from theophylline ligand $\left(\mathrm{BTC}_{7}\right)$ and $\mathrm{Pd}(\mathrm{II})$ was insoluble in any solvents. So, we compared the powders of BTC_{n} and PdBTC_{n} by diffuse reflectance UV-VIS spectroscopy. The complex PdBTC_{n} showed new adsorption bands at 350 and 420 nm which are attributed to the chelate with $\mathrm{Pd}(\mathrm{II})$.

$-\mathrm{BTC}_{12}$
$-\mathrm{BTC}_{11}$
$-\mathrm{BTC}_{10}$
-BTC
$-\mathrm{BTC}_{8}$
$-\mathrm{BTC}_{7}$
$-\mathrm{BTC}_{6}$
-BTC
-BTC
-BTC

$\begin{aligned} & -\mathrm{PdBTC}_{12} \\ & -\mathrm{PdBTC}_{11} \end{aligned}$
- PdBTC $_{10}$
-PdBTC,
$-\mathrm{PdBTC}_{n}$
-PdBTC,
-PdBTC ${ }^{\text {a }}$
- PdBTC
-PdBTC

Fig. S13. Diffuse reflectance UV-Vis spectra of a) $B T C_{n}$, and b) $P d B T C_{n}$.

FT-IR spectroscopy

a) BTC_{7} : FT-IR (KBr) vC-H 3121, $2947 \mathrm{~cm}^{-1}, v \mathrm{C}=\mathrm{O} 1703,1659 \mathrm{~cm}^{-1}$, b) PdBTC Pa_{7} : FTIR (KBr) vC-H 3090, $2927 \mathrm{~cm}^{-1}, v \mathrm{v}=\mathrm{O} 1712,1665 \mathrm{~cm}^{-1}$.

Fig. S14. FT-IR spectra of a) BTC_{7} and b) PdBTC_{7}.

${ }^{13} \mathrm{C}-\mathrm{CP} / \mathrm{MAS}$ NMR

$\mathrm{BTC}_{7}:{ }^{13} \mathrm{C}-\mathrm{CP} / \mathrm{MAS}$ NMR (100.53MHz, 298K): $\delta(\mathrm{ppm})=154.2,149.6,148.1,144.6$, $140.5,105.7,47.0,32.6,28.4,23.6,21.1, \mathrm{PdBTC}_{7}:{ }^{13} \mathrm{C}-\mathrm{CP} / \mathrm{MAS}$ NMR (100.53MHz, $298 \mathrm{~K}): \delta(\mathrm{ppm})=153.7,151.0,147.3,142.5,108.2,45.5,33.2,28.2,23.3$.

Fig. S15. Solid state ${ }^{13} \mathrm{C}-\mathrm{CP} / \mathrm{MAS}$ NMR (100.53 MHz) spectra of a) BTC_{7} and b) PdBTC_{7}.

Fig. S16. High resolution XPS spectroscopy of N1s bonding energy of the ligand of BTC_{7} and the complex of PdBTC_{7}.

SEM images of the complexes $\operatorname{PdBTC}_{n}(n=3,4,5,6,7,8,9,10,11$ and 12)

Fig. S17. SEM images of the complexes $\operatorname{PdBTC}_{n}(\mathrm{n}=3-12)$ obtained from the complexation-driven self-assembly in solution containing PdCl_{2} and BTC_{n}.

X-ray powder diffraction (XRD) measurements

Fig. S18. XRD spectra of the as-prepared microflowers of $\operatorname{PdBTC}_{n}(\mathrm{n}=7-12)$. The peaks appeared in the smaller diffraction angle (2 theta $<10^{\circ}$) indicate that there are layered structures with long range period in the assemblies. This should be related to the arrangement of the alkyl chains (See Fig. S19).

Fig. S19. Plot of the spacing data obtained from XRD of $\operatorname{PdBTC}_{\mathrm{n}}(\mathrm{n}=7-12)$ (Figure S18, the diffraction peak in the smallest angle) and the calculated length of alkyl chains against to the carbon number of the alkyl chain. The spacing increases with increasing the length of alkyl chain. This relationship suggests that the petal-like nano ribbons on the micro-flowers were composed of layered structures where the alkyl chains fold along two-dimensions to form layered surface.

2-3. Catalysis of PdBTCn in Suzuki-Miyaura coupling reactions

Table S2. Catalytic activity of PdBTCn $(n=3-12)$ in the coupling of bromobenzene with phenylboronic acid. ${ }^{[a]}$

Entry	Catalysts	Yield ${ }^{[\mathrm{cc]}}(\%)$
1	PdBTC_{3}	97
2	PdBTC_{4}	98
3	PdBTC_{5}	98
4	PdBTC_{6}	97
5	PdBTC_{7}	98
6	PdBTC_{8}	98
7	PdBTC_{9}	98
8	PdBTC_{10}	98
9	PdBTC_{11}	98
10	PdBTC_{12}	98

[a] Reaction conditions: alryl halides $(0.5 \mathrm{mmol})$, phenylboronic acid (0.6 mmol), base (1.0 mmol), solvent (5.0 mL). [b] $\mathrm{H}_{2} \mathrm{O}$:ethanol $=1: 1$. [c] Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

2-4. Recyclability tests of PdBTC_{7} for the Suzuki-Miyaura coupling reaction

Fig. S20. Recyclability tests of PdBTC_{7} for the coupling reaction of bromobenzene and phenylboronic acid. Reaction conditions: bromobenzene (0.5 mmol), phenylboronic acid (0.6 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), 1.0 \mathrm{~mol} \% \mathrm{PdBTC}_{7}$, solvent of $\mathrm{H}_{2} \mathrm{O}$:ethanol $=1: 1$ (5.0 mL).

Fig. S21. SEM images of PdBTC_{7} on the recyclability tests for the coupling reaction of bromobenzene and phenylboronic acid (scale bar : $10 \mu \mathrm{~m}$).

Table S3. Effect of the NaCl addition on the coupling of bromobenzene with phenylboronic acid. ${ }^{\text {[a] }}$

	$+$ Entry	PdBTC_{7} $\mathrm{H}_{2} \mathrm{O}$-ethanol ${ }^{[\mathrm{bb}]}, \mathrm{K}_{2}$ $20^{\circ} \mathrm{C}$, under air, 2 h	$\xrightarrow[(x \mathrm{mmol})]{ }$
		NaCl (mmol)	Yield ${ }^{[c]}$ (\%)
	1	0	98
	2	0.05	98
	3	0.5	98
	4	1.0	97
	5	2.0	96
	6	5.0	69

[a] Reaction conditions: alryl halides (0.5 mmol), phenylboronic acid (0.6 mmol), base (1.0 mmol), solvent (5.0 mL). [b] $\mathrm{H}_{2} \mathrm{O}$ ethanol $=1: 1$. [c] Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

Fig. S22. SEM images of the powders of PdBTC_{7} recovered from the recycle tests for the coupling reaction of bromobenzene and phenylboronic acid in the presence of NaCl (scale bar : $10 \mu \mathrm{~m}$).

Fig. S23. TEM images of the powders of PdBTC_{7} recovered from recycle tests in the presence or absence of NaCl for the coupling of bromobenzene and phenylboronic acid. a) PdBTC_{7}, b) PdBTC_{7} after tenth reaction without $\left.\mathrm{NaCl}, \mathrm{c}\right) \mathrm{PdBTC}_{7}$ after tenth reaction in the presence of NaCl, d) PdBTC_{7} after twentieth reaction in the presence of NaCl .

2-5. Hot filtrate test

The study on the heterogeneity of PdBTC_{7} was carried out by hot filtrate test.[2-4] After reaction (Table 1, entry 21), the catalyst was filtrated off by membrane filter. To the filtrate, p-bromotoluene, phenylboronic acid and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added and this mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . But no p-phenyltoluene was identified. This suggested that no leaching of the palladium species from PdBTC_{7}.

3. References

[1] K. Kaikake, Y. Baba, Anal. Sci., 2001, 17, 411-415
2. Z.-L. Du, Q.-Q. Dang, X.-M. Zhang, Ind. Eng. Chem. Res. 2017, 56, 4275-4280

3] L.-X. You, L.-X. Cui, B. -B. Zhao, G. X., F. Ding, B.-Y. Ren, Z.-L. Shi, I. Dragutan, V. Dragutan, Y.-G. Sun, Dalton Trans. 2018, 47, 8755-8763.
[4] Y. M. A. Yamada, S. M. Sarkar, Y. Ulozumi, J. Am. Chem. Soc. 2012, 134, 3190-3198

