Supporting Information

Fluorescently labeled xylosides offer insight into the biosynthetic pathways of glycosaminoglycans.

Roberto Mastio¹, Daniel Willén¹, Zackarias Söderlund², Gunilla Westergren-Thorsson², Sophie Manner¹, Emil Tykesson², Ulf Ellervik^{1,2*}

¹Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden. ²Department of Experimental Medical Science, Lund University, P.O. Box 117, SE-221 00 Lund, Sweden

* Corresponding author. *E-mail address:* <u>ulf.ellervik@chem.lu.se</u>.

1.	Chromatographic analysis	S2-S3
2.	¹ H-NMR and ¹³ C-NMR spectra	S4-S23

Supplementary Figure 1. Size-exclusion chromatography analysis of conditioned medium from A549 cells treated with 0.1 mM **XylNap**, **5**, **7** or **9**. Fluorescence was monitored at 229/372 (Ex./Em.) for XylNap and 410/455 (Ex./Em.) for PacBlue compounds.

Supplementary Figure 2. Reversed-phase chromatography analysis of products secreted by A549 cells after stimulation with 0.1 mM non-acetylated (top, 7) or fully acetylated (bottom, **19**) compound.

Supplementary Figure 3. Reversed-phase chromatography analysis of conditioned medium and cell lysate from A549 cells treated with 0.1 mM **5.**

Figure S5 – 1 H and 13 C spectrum for compound 5

Figure S7 – 1 H and 13 C spectrum for compound 7

Figure S8 – 1 H and 13 C spectrum for compound 8

Figure S9 – 1 H and 13 C spectrum for compound 9

Figure S10 – 1 H and 13 C spectrum for compound 11

Figure S11 – ^{1}H and ^{13}C spectrum for compound 12

Figure S12 – 1 H and 13 C spectrum for compound 13

Figure S13 – ¹H and ¹³C spectrum for compound 14

Figure S14 – 1 H and 13 C spectrum for compound 15

Figure S15 – 1 H and 13 C spectrum for compound 16

Figure S16 – ¹H and ¹³C spectrum for compound 17

Figure S17–¹H and ¹³C spectrum for compound 18

Figure S18–¹H and ¹³C spectrum for compound 19

Figure S19 – 1 H and 13 C spectrum for compound 20

Figure S20 – ¹H and ¹³C spectrum for compound 21

Figure S21 – ^{1}H and ^{13}C spectrum for compound 22

Figure S22 – ^{1}H and ^{13}C spectrum for compound 24

Figure S23 – 1 H and 13 C spectrum for compound 25

Figure S24 – ¹H and ¹³C spectrum for compound 26