Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information (SI)

Promotional mechanism of enhanced denitration activity with Cu modification in Ce/TiO₂-ZrO₂ catalyst for low temperature NH₃-SCR system

Wei Zhang ^{a,b}, Yunhao Tang ^{a,b}, Wei Xiao ^{a,b}, Min Ruan ^{a,b}, Yanshan Yin ^{a,b}, Quanbin Song ^{a,b}, Kang Xie ^{a,b}, Chuan Qin ^{a,b}, Mengyao Dong ^{a,b}, Yunhe Zhou ^{a,b}, Jie Li ^{a,b}

^a College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114, China

^b Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, Changsha, 410114, China

Fig. S1 Optimized structures of the intermediates and the transition states for NH_3 dehydrogenation reaction on the Cu atoms. The bond lengths are given in Å.

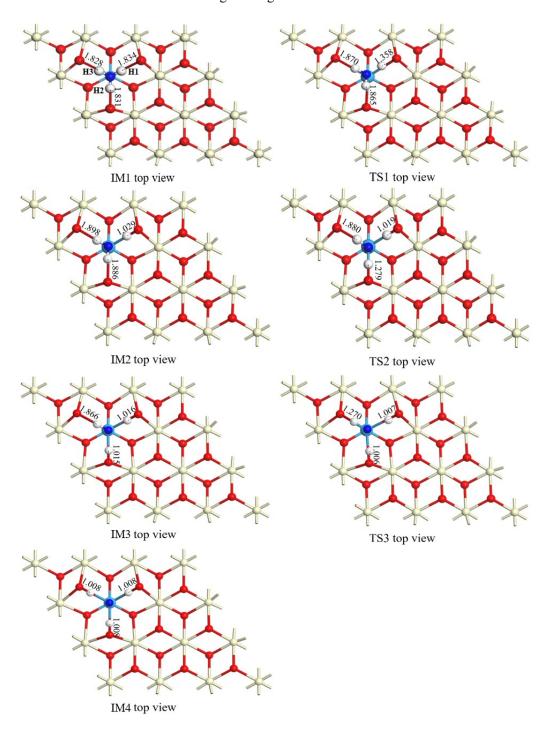
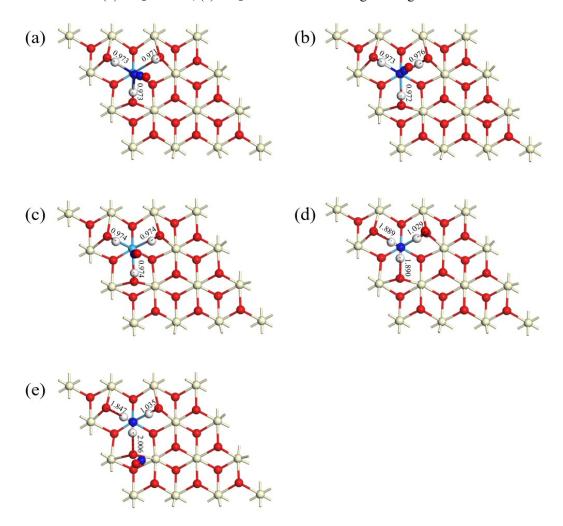



Fig. S2 Optimized structures (top view) of NO adsorptions on (a) Cu-NH₂, (b) Cu-NH, (c) Cu-N, (d) NH₂-Cu-OH, (e) NH₂-Cu-O. The bond lengths are given in Å.

