Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Insight into the Fischer-Tropsch mechanism on hcp-Fe₇C₃(211) by Density function theory : the role of surface carbon and vacancy

Jie Ren^{a,b}, Ning Ai *a and Yingzhe Yu *b

a College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China

Key Laboratory for Green Chemical Technology of Ministry of Education, R&D
Center for Petrochemical Technology, Tianjin University, Tianjin 300072, P. R. China

Corresponding author

Ning Ai: E-mail address: <u>aining@tsinghua.org.cn</u> Yingzhe Yu: E-mail address: yuyingzhe@tju.edu.cn

Elementary reactions	Initial states	Transition states	Final states
1. C ¹ +H =HC ¹			
2. HC ¹ +H =H ₂ C ¹			
3. H ₂ C ¹ +H =H ₃ C ¹			
4. H ₃ C ¹ +H =H ₄ C ¹			
5. C²+H =HC²			
6. HC ² +H =H ₂ C ²			
7. H ₂ C ² +H =H ₃ C ²			
8. H ₃ C ² +H =H ₄ C ²			

The structures of the elementary reactions in the C¹-C² coupling pathway

Figure S1. The structures of initial states, transition states, and final states about the $C^{1}-C^{2}$ coupling pathway on hcp-Fe₇C₃ (211) surface. Blue: Fe atoms; gray: C atoms; red: O atoms; white: H atoms.

Elementary reactions	reactant structure	Reference structure*	Highest barrier energy of Migration reaction (eV)	Total reaction energy of Migration reaction (eV)
1. C ¹ +H =HC ¹			0	0
2. HC ¹ +H =H ₂ C ¹			0	0
3. H ₂ C ¹ +H =H ₃ C ¹			0.11	0.09
4. H₃C¹+H =H₄C¹			0	0
5. C²+H =HC²			0	0
6. HC ² +H =H ₂ C ²			0	0

The energy barrier and structures of the migration reactions in the C¹-C² coupling pathway

7. H ₂ C ² +H =H ₃ C ²		0.01	-0.09
8. H ₃ C ² +H =H ₄ C ²		0	0
9. C ¹ +C ² =C ¹ C ²		0	0
10. C ¹ +HC ² =C ¹ HC ²		0	0
11. C ¹ +H ₂ C ² =C ¹ H ₂ C ²		0.01	-0.09
12. C ¹ +H ₃ C ² =C ¹ H ₃ C ²		0.29	-0.45
13. HC ¹ +C ² =HC ¹ C ²		0	0

14. HC ¹ +HC ² =HC ¹ HC ²		0	0
15. $HC^{1}+H_{2}C^{2}$ $=HC^{1}H_{2}C^{2}$		0.67	0.39
16. HC ¹ +H ₃ C ² =HC ¹ H ₃ C ²		0.29	-0.46
17. H ₂ C ¹ +C ² =H ₂ C ¹ C ²		0	0
18. $H_2C^1+HC^2$ $=H_2C^1HC^2$		0	0
19. $H_2C^1+H_2C^2$ $=H_2C^1H_2C^2$		0.01	-0.09
20. $H_2C^1+H_3C^2$ $=H_2C^1H_3C^2$		0.29	-0.46

*The reference structure of the C-C coupling reaction is the final structure of the stepwise hydrogenation reaction.

*The reference structure of the stepwise hydrogenation reaction is the final structure of the stepwise hydrogenation reaction in the former hydrogenation elementary reaction.

Figure S2. The reactant structure, reference structure and the migration energy about the $C^{1}-C^{2}$ coupling pathway on hcp-Fe₇C₃ (211) surface. Blue: Fe atoms; gray: C atoms; red: O atoms; white: H atoms.

Elementary reactions	Initial states	Transition states	Final states
1. H+C ¹ C ² =HC ¹ C ²			i.
2. C ¹ C ² +H =C ¹ HC ²			
3. HC ¹ C ² +H =HC ¹ HC ²			i.
4. C ¹ HC ² +H =C ¹ H ₂ C ²			
5. H+HC ¹ C ² =H ₂ C ¹ C ²			i.
6. H+C ¹ HC ² =HC ¹ HC ²			
7. H+H ₂ C ¹ C ² =H ₃ C ¹ C ²			i.

The structures of the elementary reactions in the stepwise hydrogenation pathway of C₂ species

Figure S3. The structures of initial states, transition states, and final states about the stepwise hydrogenation pathway of C_2 species on hcp-Fe₇C₃ (211) surface. Blue: Fe atoms; gray: C atoms; white: H atoms.

			Highest	Total
Flementary			parrier epergy of	reaction
reactions	reactant structure	Reference structure*	Migration	Migration
			reaction	reaction
			(eV)	(eV)
1.				
H+C ¹ C ²			0	0
=HC ¹ C ²				
2.			0	0
C ¹ C ² +H				
-C HC				
3.			0	0
HC ¹ C ² +H			0	0
=HC ¹ HC ²				
		The second states and second		
4.				
C ¹ HC ² +H			0.80	0.11
$=C^{1}H_{2}C^{2}$				
5.				
H+HC ¹ C ²			0	0
$=H_2C^1C^2$				
6.			0.80	0.29
=HL+HL+				

The barrier energy and structures of the stepwise hydrogenation pathway of $\ensuremath{\mathsf{C}}_2$ species

7. H+H ₂ C ¹ C ² =H ₃ C ¹ C ²		0	0
8. H ₂ C ¹ C ² +H =H ₂ C ¹ HC ²		0.09	-0.10
9. H+C ¹ H ₂ C ² =HC ¹ H ₂ C ²		0.46	0.42
10. HC ¹ HC ² +H =HC ¹ H ₂ C ²		0	0
11. C ¹ H ₂ C ² +H =C ¹ H ₃ C ²		0	0
12. H+HC ¹ HC ² =H ₂ C ¹ HC ²		0	0
13. H ₃ C ¹ C ² +H =H ₃ C ¹ HC ²		0.67	0.02

14. H+HC ¹ H ₂ C ² =H ₂ C ¹ H ₂ C ²		0	0
15. HC ¹ H ₂ C ² +H =HC ¹ H ₃ C ²		0.13	0.10
16. $H_2C^1HC^2+H$ = $H_2C^1H_2C^2$		0.06	0
17. H+H ₂ C ¹ HC ² =H ₃ C ¹ HC ²		0	0
18 H+C ¹ H ₃ C ² =HC ¹ H ₃ C ²		0	0
19. H ₂ C ¹ H ₂ C ² +H =H ₂ C ¹ H ₃ C ²		0.55	0.10
20. H+H ₂ C ¹ H ₂ C ² =H ₃ C ¹ H ₂ C ²		0	0

*The reference structure of the C₂ stepwise hydrogenation pathway is the final structure of C-C coupling reaction.

Figure S4. The reactant structure, reference structure and the migration energy about the stepwise hydrogenation pathway of C_2 species on hcp-Fe₇C₃ (211) surface. Blue: Fe atoms; gray: C atoms; white: H atoms.

Elementary reactions	Initial states	Transition states	Final states
1. H+C¹O =HC¹O			
2. C²O =C²+O			
3. H+C²O =HC²O			
4. C ¹ O =C ¹ +O			
5. C¹O+H =C¹OH			
6. С²О+Н =С²ОН			
7. HC ¹ O =C ¹ H+O			

The structures of the elementary reactions in the carbon vacancy recover pathway

Figure S5. The structures of initial states, transition states, and final states about carbon vacancy recover pathway on hcp-Fe₇C₃ (211) surface. Blue: Fe atoms; gray: C atoms; red: O atoms; white: H atoms.

The structures of the elementary reactions in oxygen remove pathway

Figure S6. The structures of initial states, transition states, and final states about the oxygen remove pathway on hcp-Fe₇C₃ (211) surface. Blue: Fe atoms; gray: C atoms; red: O atoms; white: H atoms.

			Highest	Total
			barrier	reaction
Elementary	reactant structure	Reference structure*	energy of	energy of
reactions		Reference structure	migration	migration
			reaction	reaction
			(eV)	(eV)
1. 0+H			0	0
=OH				
2.			0	0
-0-				
-002				
3.			0.07	-0.01
-0001				
4.			0.07	-0.01
OH+H				
=H ₂ U				
5.			0.27	-0.02
СООН				
=CO ₂ +H				

The barrier energy and structures of the migration reactions in the oxygen remove pathway

*The reference structure of the O remove pathway is the final structure of the former elementary reaction.

Figure S7. The reactant structure, reference structure and the migration energy about the oxygen remove pathway on hcp-Fe₇C₃ (211) surface. Blue: Fe atoms; gray: C atoms; red: O atoms; white: H