Supplementary Material

Fluorescent "on-off-on" sensor based on N, S co-doped carbon dots from seaweed (*Sargassum carpophyllum*) for specific detection of Cr(VI) and ascorbic acid

Hua Tian^{1†}, · Guangxu Ju^{1†}, · Mengting Li¹, · Wenzhe Fu¹, · Yongcheng Dai¹, · Zhenyi Liang¹, · Yuheng Qiu¹ · Ziyu Qin^{1*}, · Xueqiong Yin^{1*}

¹ Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou,

Hainan, 570228, P.R. China

[†]Authors contributed equally to the work.
^{*}Corresponding author.
Xueqiong Yin
Address: School of Chemical Engineering and Technology, Hainan University, 58th
Renmin Road, Haikou, Hainan, 570228, PR China. *E-mail address*:
yxq88@hotmail.com (X. Q. Yin). Tel.: +86 898 66279161. Fax: +86 898 66291383.
Mobile: +86 13138907588.

Ziyu Qin Address: School of Chemical Engineering and Technology, Hainan University, 58th Renmin Road, Haikou, Hainan, 570228, PR China. *E-mail address*: ziyuqin@hainanu.edu.cn.

Fig. S1 (a) The effect of temperature on the QY. (b) The effect of time on the QY.

Fig. S2 XRD patterns of N,S-CDs at different temperature.

Fig. S3 XPS survey spectrum of N,S-CDs

Fig. S4 (a) UV–vis absorption spectrum, excitation FL spectrum (360 nm) and emission FL spectrum (430 nm) of N,S-CDs. **(b)** FL spectra of N,S-CDs at different excitation wavelengths.

Fig. S5 (a) The photobleaching characteristic of N,S-CDs. **(b)** Effect of storage time (days) on the FL of N,S-CDs. **(c)** Effect of the ion strength on FL of N,S-CDs. **(d)** Effect of the pH on FL of N,S-CDs.

Methods	Response	Solvent	detection system	LOD	Linear range	Reference
	time			(µM)	(µM)	
CDs fluorescence	20 min	PBS solution	Fluorescence	2.10	2-180	1
probe		(pH 5.0)	spectra			
Pb(II)-organic	-	H ₂ O	Luminescence	13.2	0-1000	2
framework			spectra			
Metal organic	5	deionized water	Photoluminescence	41	0-500	3
frameworks			Spectra			
PVC-membrane	<30 s	citric	Ion-selective	2.5	5.2-1.0×10 ⁵	4
electrode		acid/sodium citrate buffer	electrode			
MR-CDs	10 min	HCl-KCl	Fluorescence	0.02	0.2-50	5
		solution (pH	spectra			
		2.5)				
N,S-CDs	5 min	deionized water	Fluorescence	1.04	0-120	This work
			spectra			

Table S1 Comparison of different reported methods for Cr(VI) detection

Methods	Origins	Linear range of Cr(VI) (µM)	LOD of Cr(VI) (µM)	Linear range of AA (µM)	LOD of AA (µM)	Reference
N,S-CDs	ammonium citrate and cysteamine hydrochloride	0.35-126.0	0.11	0.57-264.0	0.17	6
N-CDs	citric acid and glutamic acid	0.01–250	5 nM	1-750	0.3	7
N-CDs	glucosamine and ethylenediamine	0.5–125	0.08	0.25-175	0.15	8
PNCQDs	glucose, 1,2- ethylenediamine and concentrated H ₃ PO ₄	1.5-30	23 nM	5.0-200	1.35	9
S,N-CDs	glucose, 1,2- ethylenediamine and concentrated H ₂ SO ₄	0.065-198	0.56 nM	6.6-892	76 nM	10
N,S-CDs	seaweed (Sargassum carpophyllum)	0-120	1.04	320-650	2.99	This work

Table S2 Comparison of different reported methods for Cr(VI) and AA detection

References

- C. Li, W. Liu, X. Sun, W. Pan, J. J. S. Wang and A. B. Chemical, *Sensor Actuat B-Chem*, 2017, 252, 544-553.
- F. Guo, Z. Chu, M. Zhao, B. Zhu and X. J. J. o. S. S. C. Zhang, *J Solid State Chem*, 2019, 274, 92-99.
- 3. X. Dao, Y. Ni, H. J. S. Pan and A. B. Chemical, Sensor Actuat B-Chem, 2018, 271, 33-43.
- 4. A. Yari and H. Bagheri, *Journal of the Chinese Chemical Society*, 2009, **56**, 289-295.
- 5. Z. Ma, Y. Ma, M. Gu, X. Huo, S. Ma, Y. Lu, Y. Ning, X. Zhang, B. Tian and Z. Feng, Nanomaterials (Basel), 2020, 10.
- 6. H. Yang, L. He, Y. Long, H. Li, S. Pan, H. Liu, X. J. S. A. P. A. M. Hu and B. Spectroscopy, *Spectrochim Acta A*, 2018, **205**, 12-20.
- 7. Zhang, Yuhua, Fang, Xian, Zhao, Hong, Li, Z. J. T. t. I. J. o. Pure and A. A. Chemistry, 2018.

- 8. S. K. Tammina, Y. J. J. o. P. Yang and P. A. Chemistry, *J Photoch Photobio A*, 2020, **387**, 112134.
- 9. X. Gong, Y. Liu, Z. Yang, S. Shuang, Z. Zhang and C. J. A. c. a. Dong, *Anal Chim Acta*, 2017, **968**, 85-96.
- S. Song, F. Liang, M. Li, F. Du, C. J. S. A. P. A. M. Dong and B. Spectroscopy, 2019, 215, 58-68.