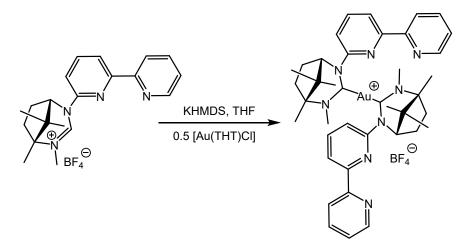
Supplementary material.

A Hybrid Bipy-NHC Ligand for the Construction of Group 11 Mixed-Metal Bimetallic Complexes

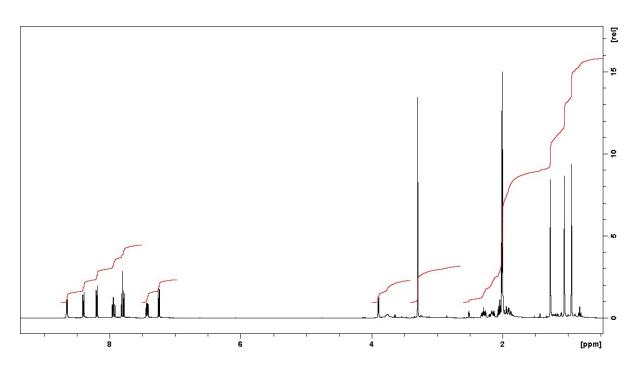
Benson M. Kariuki,^a James A. Platts^a and Paul D. Newman*^b

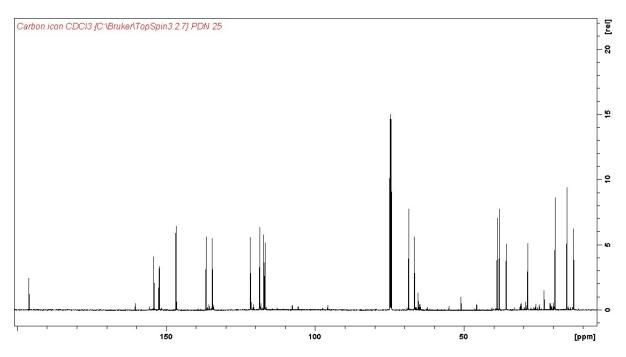

⁺School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.

[‡]Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.

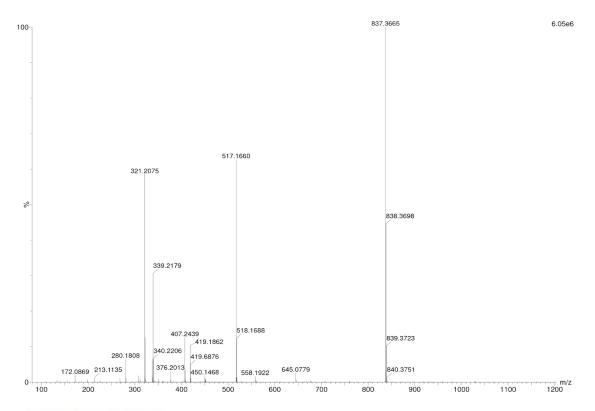
<u>Contents</u>

NMR and MS data:	S2
[Au(κ- <i>C</i> - L) ₂]BF ₄ , 1	S2
[AuAg(κ- <i>C</i> ^{Au} ,κ ² - <i>N</i> , <i>N</i> ′ ^{Ag} - 1) ₂](BF ₄) ₂ , 2a	S5
[AuCu(κ- <i>C</i> ^{Au} ,κ ² - <i>N</i> , <i>N</i> ^{′Cu} - 1) ₂](BF ₄) ₂ , 2b	S7
[AuAu'(κ- <i>C,N</i> ^{Au,Au'} ,κ ¹ - <i>N</i> ^{Au,Au'} - 1) ₂](BF ₄) ₂ , 3	S11
Theoretical calculations of metallophilic interactions	S12
Crystallographic data	S15
References	.S17


[Au(κ-*C*-**L**)₂]BF₄, **1**.

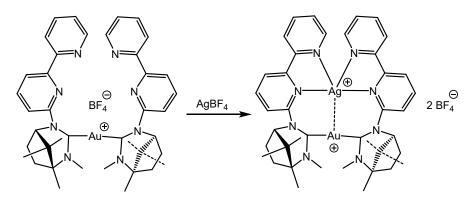

To a stirred suspension of [LH]BF₄ (100 mg, 2.45 x 10⁻⁴ mol) in THF (10 ml) at -40 °C was added, as a solid, KHMDS (59 mg, 2.94 x 10⁻⁴ mol). The addition of the base caused the salt to dissolve to give an orange solution. After one hour at -40 °C, solid [Au(THT)Cl] (39 mg, 1.22 x 10⁻⁴ mol) was added and the stirred solution allowed to warm slowly to RT in the absence of light. The volatiles were removed in vacuo and the resultant solid dissolved in CH₂Cl₂ (5 ml) and filtered through a fibreglass filter. After removal of volatiles the residue was crystallised from acetone by vapour-diffusion of pentane to give colourless crystals. Yield = 88 mg (78%).

¹H (d₆-acetone, 400 MHz): 8.65 (ddd, 4.7, 1.7, 0.9 Hz, 1H), 8.40 (dt, 8.0, 0.9 Hz, 1H), 8.19 (dd, 7.8, 0.8 Hz, 1H), 7.94 (td, 7.7, 1.8 Hz 1H), 7.80 (t, 7.8 Hz, 1H), 7.42 (ddd, 7.6, 6.0, 1.2 Hz, 1H), 7.24 (dd, 7.9, 0.8 Hz, 1H), 3.89 (d, 5.1 Hz, 1H), 3.29 (s, 3H), 2.35-1.80 (m, 4H), 1.26 (s, 3H), 1.05 (s, 3H), 0.94 (s, 3H) ppm. ¹³C{¹H} (CDCl₃, 125 MHz): 196.2 (NCN), 154.2 (C), 152.5 (C), 152.4 (C), 146.8 (CH), 136.7 (CH), 134.6 (CH), 121.8 (CH), 118.6 (CH), 117.3 (CH), 116.9 (CH), 68.6 (C), 66.8 (CH), 39.0 (C), 38.2 (CH₂), 35.9 (CH₃), 28.7 (CH₂), 19.6 (CH₃), 15.3 (CH₃), 13.3 (CH₃) ppm. HRMS (ES): m/z 837.3665 (calc. 837.3667) [M]⁺, 100%.

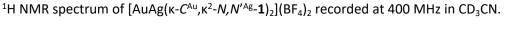

¹H NMR spectrum of $[Au(\kappa-C-L)_2]BF_4$ recorded at 400 MHz in d₆-acetone.

 ^{13}C NMR spectrum of [Au($\kappa\text{-C-L})_2$]BF4 recorded at 125 MHz in CDCl3.

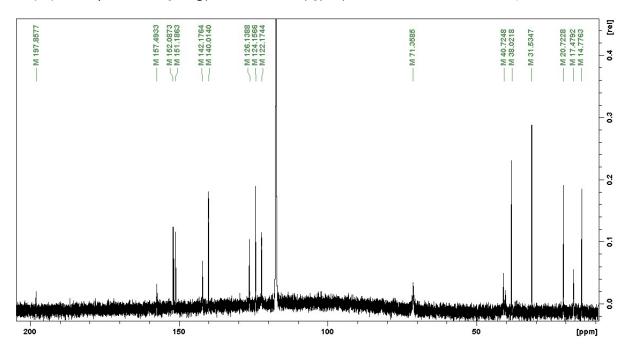
HRMS (ES⁺) spectrum of $[Au(\kappa-C-L)_2]BF_4$.



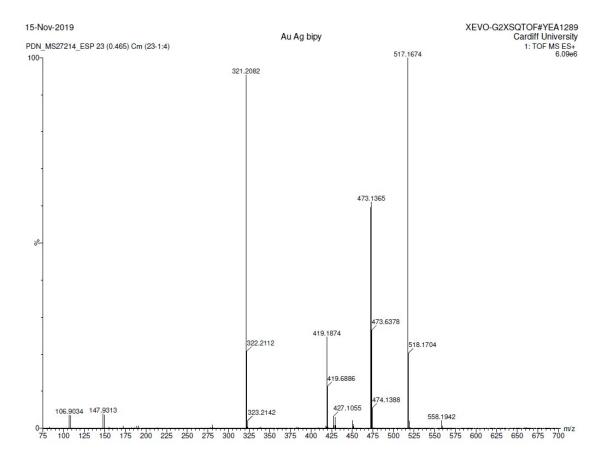
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 200.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

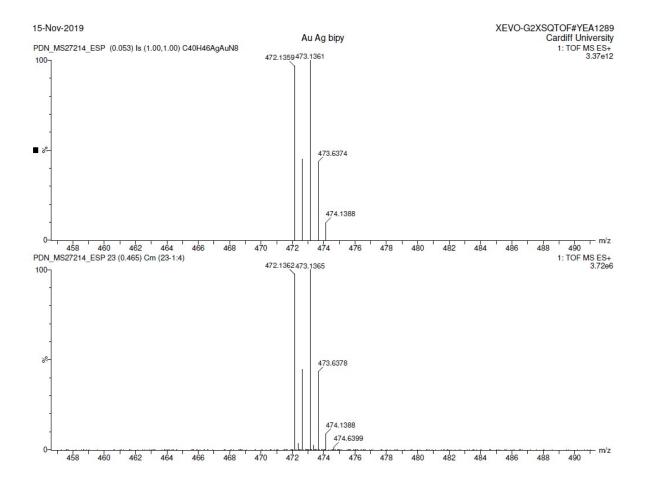

Monoisotopic Mass, Odd and Even Electron Ions 15 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-40 H: 0-48 N: 0-8 197Au: 0-1

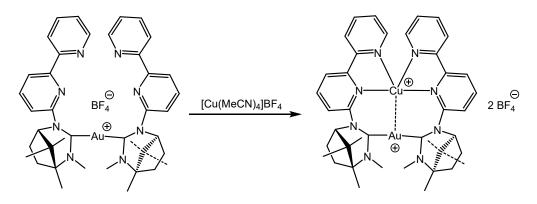

Minimum: Maximum:		5.0	5.0	-1.5 200.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
837.3665	837.3667	-0.2	-0.2	21.5	346.4	n/a	n/a	C40 H48 N8 197Au


 $[AuAg(\kappa-C^{Au},\kappa^2-N,N'^{Ag}-1)_2](BF_4)_2, 2a.$

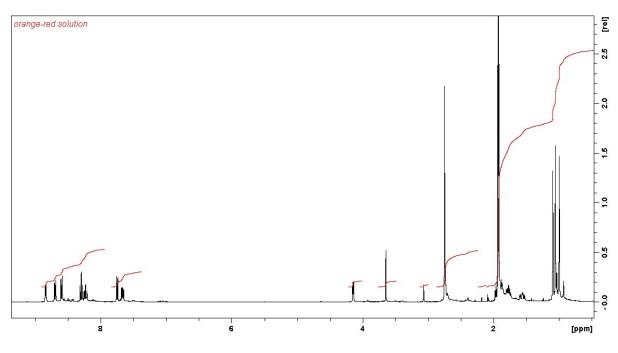
A mixture of $[Au(\kappa-C-1)_2]BF_4$ (20.0 mg, 2.26 x 10⁻⁵ mol) and AgBF₄ (4.4 mg, 2.26 x 10⁻⁵ mol) were added to d₆-acetone (1.0 ml) and sonicated for ten seconds. The pale yellow solution was isolated from the grey solid and taken to dryness to yield a cream solid. Yield = 68%. Crystals suitable for analysis by single-crystal X-ray crystallography were obtained by vapour diffusion of Et₂O into a solution of the complex in acetone. ¹H (CD₃CN, 400 MHz): 8.80 (br, 2H), 8.51 (d, 8.1 Hz, 2H), 8.35 (d, 7.9 Hz, 2H), 8.23 (m, 4H), 7.69 (dd, 6.9, 5.6 Hz, 2H), 7.53 (d, 7.9 Hz, 2H), 3.86 (br, 2H), 2.68 (s br, 6H), 2.20-1.60 (m br, 8H), 1.10 (s br, 9H), 1.04 (s br, 9H) ppm. ¹³C{¹H} (CD₂CN, 150 MHz): 198.0 (NCN), 157.4 (C), 151.9 (CH), 151.7 (C), 151.1 (CH), 142.0 (CH), 140.0 (CH), 126.2 (CH), 124.2 (CH), 122.2 (CH), 71.2 (C), 71.2 (CH), 40.8 (C), 40.2 (CH₂), 38.2 (CH₃), 31.4 (CH₂), 20.7 (CH₃), 17.4 (CH₃), 14.6 (CH₃) ppm. HRMS (ES): m/z 473.1365 [M]²⁺, 100%.



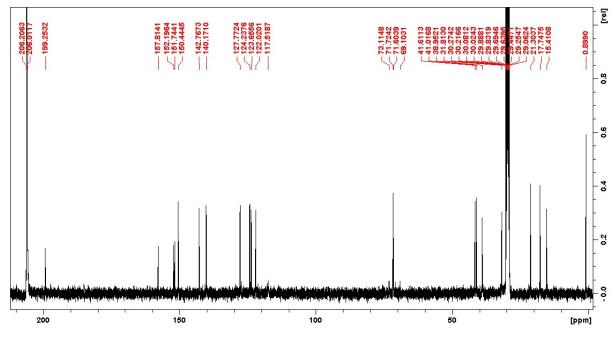



¹³C{¹H} NMR spectrum of $[AuAg(\kappa - C^{Au}, \kappa^2 - N, N'^{Ag} - 1)_2](BF_4)_2$ recorded at 150 MHz in CD₃CN.

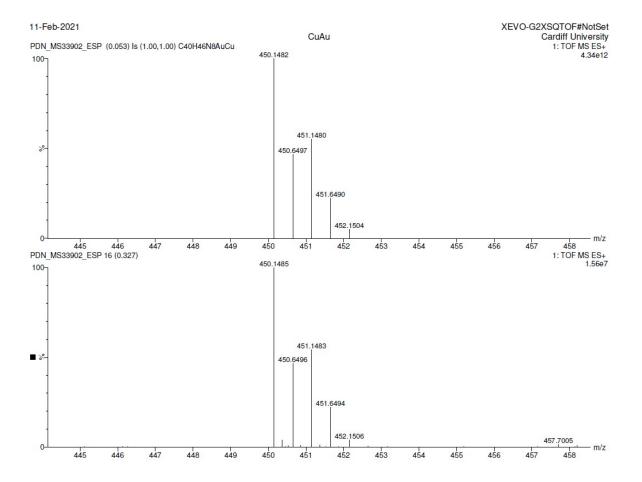
HRMS (ES⁺) spectrum of $[AuAg(\kappa - C^{Au}, \kappa^2 - N, N'^{Ag}-1)_2](BF_4)_2$



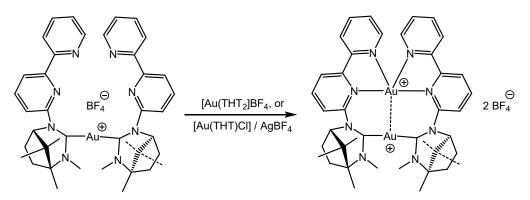
 $[AuCu(\kappa-C^{Au},\kappa^2-N,N'^{Cu}-1)_2](BF_4)_2, 2b.$

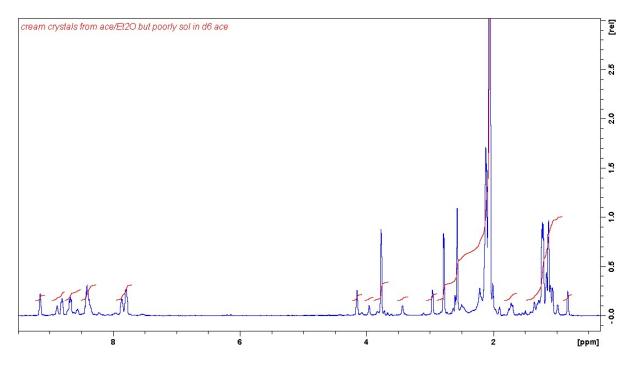


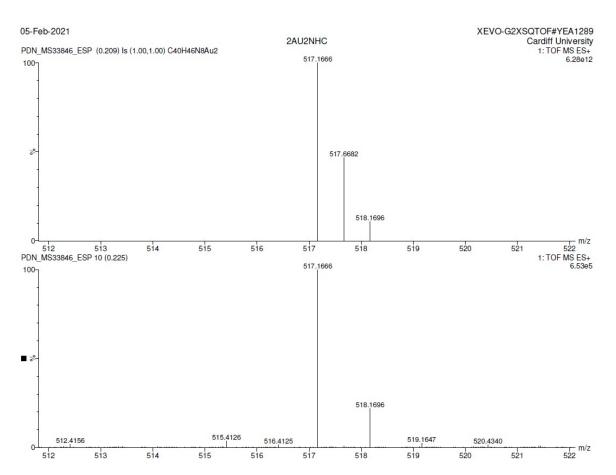
A mixture of $[Au(\kappa-C-1)_2]BF_4$ (20.0 mg, 2.26 x 10⁻⁵ mol) and $[Cu(MeCN)_4]BF_4$ (6.8 mg, 2.26 x 10⁻⁵ mol) were dissolved in acetone (1.0 ml) to give an orange-red solution which was taken to dryness to give an orange-red solid. Yield = quantitative. ¹H (d₆-acetone, 400 MHz): 8.84 (dd, 5.0, 0.7 Hz, 2H), 8.69 (d, 8.2 Hz, 2H), 8.59 (d, 8.0 Hz, 2H), 8.29 (t, 8.0 Hz, 2H), 8.23 (dt, 8.0, 1.7 Hz, 2H), 7.75 (d, 8.1 Hz, 2H), 7.66 (ddd, 7.4, 5.1, 0.8 Hz, 2H), 4.14 (d, 4.6 Hz, 2H), 2.74 (s, 6H), 2.00-1.50 (m, 8H), 1.09 (s, 6H), 1.05 (s, 6H), 0.99 (s, 6H) ppm. ¹³C{¹H} (d₆-acetone, 100 MHz): 199.3 (NCN), 157.8 (C), 152.2 (C), 151.7 (C), 150.4 (CH), 142.8 (CH), 140.2 (CH), 127.8 (CH), 124.2 (CH), 123.7 (CH), 122.0 (CH), 71.7 (C), 71.6 (CH), 41.6 (C), 41.0 (CH₂), 39.0 (CH₃), 31.8 (CH₂), 21.3 (CH₃), 17.7 (CH₃), 15.4 (CH₃) ppm. HRMS (ES): m/z 450.1485 [M]²⁺, 100%.



¹H NMR spectrum of $[AuCu(\kappa-C^{Au},\kappa^2-N,N'^{Cu}-1)_2](BF_4)_2$ recorded at 400 MHz in d₆-acetone.


 $^{13}C \text{ NMR spectrum of } [AuCu(\kappa-\textit{C}^{Au},\kappa^2-\textit{N},\textit{N}'^{Cu}-\textbf{1})_2](BF_4)_2 \text{ recorded at 100 MHz in } d_6\text{-acetone}.$




Attempted preparation of $[AuAu(\kappa - C^{Au}, \kappa^2 - N, N'^{Au} - 1)_2](BF_4)_2$, **2c**.

In a typical procedure, a solution of AgBF₄ (12 mg, 6.10 x 10⁻⁵ mol) and THT (18 mg, 1.93 x 10⁻⁴ mol) in CH₂Cl₂ (5 ml) was stirred for 2 hours in the absence of light whereupon [Au(THT)Cl] (18 mg, 5.65 x 10⁻⁵ mol) was added as a solid. After stirring for a further 1 hour in the dark, the mixture was filtered into a stirred solution of $[Au(\kappa-C-1)_2]BF_4$ (50.0 mg, 5.65 x 10⁻⁵ mol) in CH₂Cl₂. After stirring for a further 1 hour in the dark, the solution was filtered and all volatiles removed in *vacuo*. The resultant tan solid was triturated with diethyl ether, filtered and dried in *vacuo*. All attempts to obtain a pure compound by recrystallisation from various solvents were unsuccessful. Only on a single occasion were a small number of crystals obtained by vapour diffusion of pentane into an acetone solution of the mixture. These proved to be $[AuAu'(\kappa-C^{Au/Au'}, \kappa^1-N^{Au/Au'}-1)_2](BF_4)_2$, **3**. Decomposition was often observed as evidenced by the deposition of dark solids. Changes to the procedure described above included using AgOTf or AgPF₆, isolating the $[Au(THT)_2]BF_4$ before the second step (this is not recommended as this material is quite sensitive) and reversing the addition of the final step but none of these changes proved successful.

¹H NMR spectrum of the solid resulting from the attempted synthesis of **2c** recorded at 400 MHz in d_6 -acetone. This is the best quality sample that could be obtained.

HRMS (ES⁺) spectrum showing the dication $[AuAu'(\kappa - C^{Au,Au'}, \kappa^1 - N^{Au,Au'} - 1)_2]^{2+}$

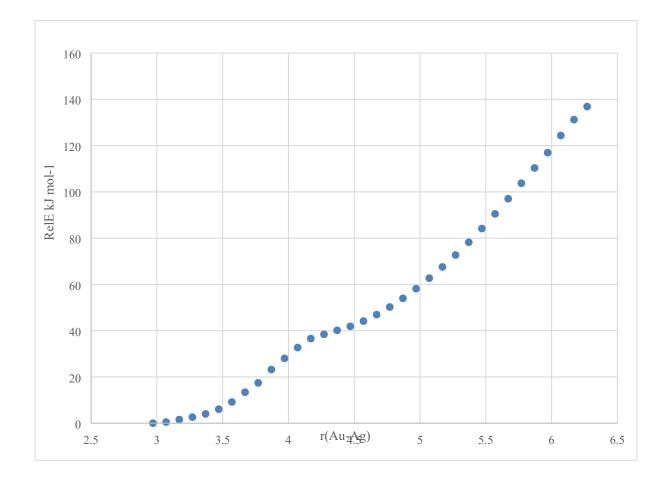
Theoretical details

All DFT calculations were performed in the Gaussian09 suite (rev D.01). PBE0/SDD-6-31G(d) was selected as the optimum method for further study based on comparison with the X-ray structure of **2a** (see below). All compounds were fully optimized without symmetry constraints, and confirmed as minima by harmonic frequency calculation. Relaxed potential energy scan of **2a** along Ag-Au used 50 steps of 0.1 Å starting from the optimized geometry. Hypothetical homo-metallic dimers were constructed from the optimized geometry of **2a** and fully optimized at the same level. Atoms in Molecules analysis used the AIMAII package.

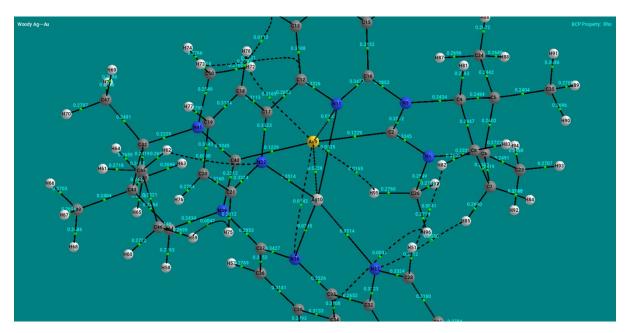
Comparison of selected geometrical details, all with SDD basis/ECP on Ag and Au, 6-31G(d) on all remaining atoms

	Ag-Au	Ag-C	C-Ag-C	Ag-N
M06-2X	3.015	2.088	166.9	2.351, 2.557
PBEO	2.896	2.068	175.5	2.299, 2.501
PBE0-D	2.970	2.065	164.3	2.266, 2.476

Total energies of hetero- and homo-metallic dimers (au)


Au-Ag	-2270.710317
Au-Cu	-2321.041941
Au-Au	-2259.472652
Ag-Ag	-2281.899856
Cu-Cu	-2382.570095
Ag-Cu	-2332.234772

Relative energies of hetero- and homo-metallic dimers (kJ mol⁻¹)


2*Au-Ag	Au-Au + Ag-Ag	-63.18
2*Au-Cu	Au-Au + Cu-Cu	-54.00
2*Ag-Cu	Ag-Ag + Cu-Cu	+0.53

Electron density at selected bond critical points in 2a (au)

Ag-Au	0.0228
Ag-C	0.1229
Ag-N	0.0514, 0.0335
AuN	0.0142

Molecular graph of 2a

Crystallographic data. Crystal structure determination

Single-crystal XRD data were collected on an Agilent SupaNova Dual Atlas diffractometer with a mirror monochromator using either Cu (λ = 1.5418 Å) or Mo (λ = 0.7107 Å) radiation. Sample temperature was controlled using an Oxford Cryosystems cooling apparatus. Crystal structures were solved and refined using SHELXS and refined using SHELXL¹ Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted in idealized positions, and a riding model was used with Uiso set at 1.2 or 1.5 times the value of Ueq for the atom to which they are bonded.

Compound (Identification code)	2a (pdn1903b)	3 (pdn2002)
CCDC reference	2106666	2106665
Empirical formula	$C_{40}H_{47.5}B_2F_8N_8AgAu$	$C_{47}H_{60}Au_{2}BF_{7}N_{8}O_{5}S$
Formula weight	1118.81	1386.83
Temperature /K	200(2)	293(2)
Wavelength /Å	0.71073	0.71073
Crystal system	Monoclinic	Triclinic
Space group	P21	P ₁
a/Å	12.5502(6)	9.2214(3)
b/Å	26.5936(6)	11.7385(4)
c/Å	13.7021(5)	13.0330(4)
α/°	90	72.325(3)
β/°	114.813(5)	75.768(3)
γ/°	90	86.988(3)
Volume/Å ³	4151.0(3)	1302.54(8)
Ζ	4	1
Density (calculated)/ Mgm ⁻³	1.790	1.768
Absorption coefficient/ mm ⁻¹	4.079	5.742
S1Crystal size/ mm ³	0.520 x 0.257 x 0.053	0.229 x 0.173 x 0.154
Reflections collected	19872	12209
Independent reflections	17003	10912
R(int)	0.0392	0.0349
Data / restraints / parameters	19872 / 235 / 1143	12209 / 153 / 691
Goodness-of-fit on F ²	1.040	1.023
R1, wR2 [I>2σ(I)]	0.0397, 0.0833	0.0330, 0.0623
R1, wR2 (all data)	0.0519, 0.0821	0.0407, 0.0663
Absolute structure parameter	-0.005(4)	-0.012(5)
Largest diff. peak and hole e.Å-3	1.468 and -1.781	0.937 and -0.859

Table S1. Crystal data and structure refinement for **2** (pdn1903b), and **4** (pdn2002)

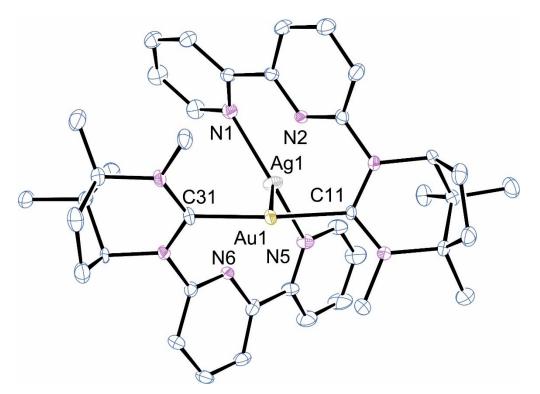


Fig 1: A 30% probability Ortep³ representaion of complex **2** with hydrogen atoms, solvent molecules and counterion omitted.

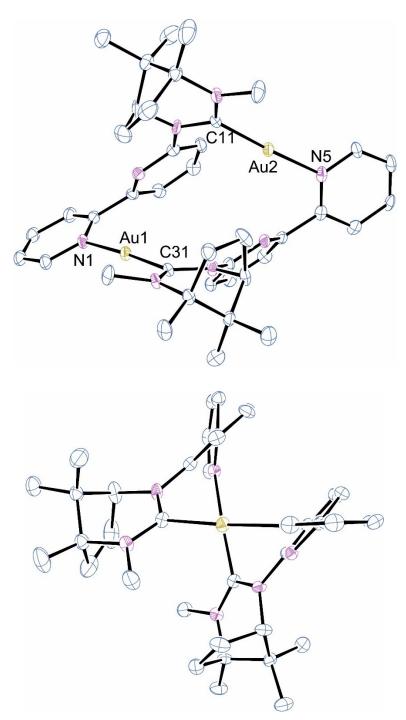


Figure 2: Two Ortep³ views of the complex cation **4** (the lower one viewed down the Au-Au axis) at 30% probability with hydrogen atoms, solvent molecules and counterion omitted for clarity.

References

1) Sheldrick, G. M. A short history of SHELX Acta Crystallogr. A 2008, 64, 112-122.

2) M. Uzarewicz-Baig, M. Koppenwallner, S. Tabassum and R. Wilhelm, *Appl. Organometal. Chem.*, 2014, **28**, 552-558.

3) L. J. Farrugia, J. Appl. Cryst. 2012, 45, 849-854.