Supporting Information

3316 in reclaimed water

${ }^{b}$ University of Washington, Seattle, 98105, WA, USA

07/12/2021, the ESI was first published 02/12/2021. incorrect.

S1. The detailed for electrochemical test

 pitting potential $\left(E_{\text {pit }}\right)$.Xi Chen, ${ }^{a}$ Hongyan Liu, ${ }^{a}$ Xiang Sun, ${ }^{a}$ Botao Zan ${ }^{\text {b }}$ and Meisheng Liang *a
${ }^{a}$ College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.

This version of the Electronic Supplementary Information replaces a previous copy in which the author order was

In order to reach a stable state for the experimental system before potentiodynamic polarization tests and EIS measurements, the open circuit potential method was used to monitor the corrosion potential ($\mathrm{E}_{\text {corr }}$) of each sample for 30 min . Then EIS measurements were initially performed because its weak influence to working electrode, and the date were recorded using $\mathrm{E}_{\text {corr }}$ in a frequency range from $10^{5} \mathrm{~Hz}$ to $10^{-2} \mathrm{~Hz}$ with a sweeping frequency range of 12 points per decade frequency. After recording, EIS spectra were fitted by Z-view software. Finally, the potentiodynamic polarization tests with potential scan rate of $0.0005 \mathrm{~V} \mathrm{~s}^{-1}$ were carried out for analyzing the pitting corrosion susceptibility of working electrode, where the potential value was defined as the

Fig. S1 Calculated effective capacitance ($\mathrm{C}_{\text {eff }}$) of AISI 304 and AISI 316 at different chloride concentration.

$\mathrm{Cl}^{-} /(\mathrm{mg} / \mathrm{L})$	25	50	100	200	400
$\mathrm{I}_{\text {Corr }} / 304\left(\mathrm{nA} \cdot \mathrm{cm}^{2}\right)$	-41	-55	-60	-72	-162
$\mathrm{I}_{\text {Corr }} / 316\left(\mathrm{nA} \cdot \mathrm{cm}^{2}\right)$	-30	-44	-49	-59	-74
$\mathrm{E}_{\text {Corr }} / 304(\mathrm{mV})$	100	298	334	506	926
$\mathrm{E}_{\text {Corr }} / 316(\mathrm{mV})$	60	162	284	395	595

Fig. S3 SEM images of AISI 304 (a) and AISI 316 (b) after being corroded in $200 \mathrm{mg} / \mathrm{L}$ of Cl^{-}.

Table S1 $\mathrm{I}_{\text {Corr }}$ and $\mathrm{E}_{\text {Corr }}$ data for AISI 304 and AISI 316 in potentiodynamic polarization test

