Completely Green Synthesis of Rose-Shaped Au Nanostructures and Their Catalytic Applications

Jae Hwan Jeong,^a Astrini Pradyasti,^a Hyeonbo Shim,^a Hee-Chul Woo,^b Mun Ho Kim^{a,*}

^aDepartment of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu,

Busan 48513, Republic of Korea

^bDepartment of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea

* Corresponding author: M. H. Kim (munho@pknu.ac.kr)

(Tel.; +82-51-629-6459, Fax; +82-51-629-6429)

Supporting Tables

Table S1. Values of the activity parameter, κ , for various heterogeneous catalysts; the values of κ were obtained by dividing the reaction rate constant by the total weight of used catalyst.

Catalysts	Total weight of used catalyst [mg]	Reaction rate constant (k) [10 ⁻³ s ⁻¹]	k [s ⁻¹ g ⁻¹]	Ref.
Smooth-edged Au nanostructures	0.28	1.7	6.07	1
CuNPs	1	7.11	7.11	2
PtAu core-shell NPs	0.5	5.92	11.8	3
Jagged-edged Au nanostructures	0.16	2.18	13.6	1
Multiply-stacked Au nanostructures	0.26	4.8	18.5	1
Coffee arabica seed extract stabilized Au nanoparticles	2.76	66.3	24	4
PtPd bimetallic nanoparticles	0.08	2.31	28.9	5
CuO nanosheets	0.1	4.58	45.8	6
Citrate stabilized Au nanoparticles	2.76	140	50.8	4
Avocado seed extract stabilized Au nanoparticles	0.03	1.55	51.7	7
Porous and Solid Au nanoparticles	0.05	4.6	92	8
Poly(diallyldimethylammonium chloride)-stabilized Pt nanoparticles	0.286	30	105	9
NiAu core-shell nanoparticles	0.06	6.4	107	10
Porous AuPt microparticles	0.5	55	110	11
PtAu alloy nanocubes	0.04	5.91	147.8	12
AgNi Alloy	0.2	31.1	156	13
Hollow porous Cu particles	0.05	9.3	186	14
Poly(diallyldimethylammonium chloride)-stabilized Pd nanoparticles	0.292	57	195	9
Porous and hollow Au nanoparticles	0.05	12.1	242	8
Rose-shaped Au nanostructures	0.06	17.4	290	This work

Supporting Figures

Fig. S1. Photographs of the reaction mixtures without (a) PVP or (b) Na-alginate and aged under UV irradiation for 3 h at room temperature. (c) Photograph of the reaction mixture including Na-alginate and PVP and aged in a dark room for 3 h at room temperature.

Fig. S2. XRD pattern of the rose-shaped Au nanostructures shown in Fig. 1.

Fig. S3. (a) SEM and (b) TEM images of the rose-shaped Au nanostructures after aging at room temperature over 3 months.

Fig. S4. TGA curve of the rose-shaped Au nanostructures after the complete drying of water.

Fig. S5. (a) Photograph of the reaction mixture containing HAuCl₄ and PVP but excluding Naalginate, aged under UV irradiation for 3 h at room temperature. In the reaction, the PVP-to-HAuCl₄ weight ratio was approximately 18. (b)–(c) TEM images of the Au nanostructures shown in (a).

Fig. S6. (a) TEM and (b) SEM images of Au nanostructures grown for 1.5 h under UV irradiation at room temperature. The scale bar indicates 100 nm.

Fig. S7. UV–Vis absorption spectra of the solution containing 4-NP and NaBH₄, as recorded after the reaction proceeded for 210 s.

References

- 1 E. J. Jeong, E. Im, D. C. Hyun, J. W. Lee and G. D. Moon, *J. Ind. Eng. Chem.*, 2020, **89**, 204–211.
- 2 A. K. Sasmal, S. Dutta and T. Pal, *Dalt. Trans.*, 2016, **45**, 3139–3150.
- Z. S. Lv, X. Y. Zhu, H. Bin Meng, J. J. Feng and A. J. Wang, *J. Colloid Interface Sci.*, 2019, 538, 349–356.
- N. K. R. Bogireddy, U. Pal, L. M. Gomez and V. Agarwal, *RSC Adv.*, 2018, 8, 24819–24826.
- 5 B. Zhang, X. Zhan, P. Zhao and Z. Li, *RSC Adv.*, 2015, **5**, 57640–57646.
- 6 K. Sahu, J. Singh and S. Mohapatra, *Opt. Mater. (Amst).*, 2019, **93**, 58–69.
- 7 N. K. R. Bogireddy and V. Agarwal, *RSC Adv.*, 2019, **9**, 39834–39842.
- 8 Q. Zhang, B. Zang and S. Wang, *RSC Adv.*, 2019, **9**, 23081–23085.
- J. G. You, C. Shanmugam, Y. W. Liu, C. J. Yu and W. L. Tseng, *J. Hazard. Mater.*, 2017, 324, 420–427.
- 10 X. Le, Z. Dong, W. Zhang, X. Li and J. Ma, J. Mol. Catal. A Chem., 2014, 395, 58–65.
- 11 A. Ma, J. Xu, X. Zhang, B. Zhang, D. Wang and H. Xu, Sci. Rep., 2014, 4, 4849.
- 12 G. Fu, L. Ding, Y. Chen, J. Lin, Y. Tang and T. Lu, *CrystEngComm*, 2014, 16, 1606–1610.
- 13 M. Kumar and S. Deka, ACS Appl. Mater. Interfaces, 2014, 6, 16071–16081.

J. Jiang, Y. Soo Lim, S. Park, S. H. Kim, S. Yoon and L. Piao, *Nanoscale*, 2017, 9, 3873–3880.