Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Al-doped α-MnO₂ coated by lignin for high-performance rechargeable aqueous zinc-ion battery

Jingliang Xu^{a,b,c}, Xinhang Hu^a, Md. Asraful Alam^a, Gul Muhammad^a, Yongkun Lv^a,

Minghai Wang^a, Chenjie Zhu^d, Wenlong Xiong^{a,*}

^a School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

^b Zhengzhou Tuoyang Industrial Co., Ltd, Zhengzhou, China

^c Zhengzhou University Industrial Technology Research Institute Co., Ltd, Zhengzhou,

China

^d College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S Puzhu Rd, 211816 Nanjing, China

*Corresponding Author

Wenlong Xiong

E-mail: xiongwenlong@zzu.edu.cn

Figure S1 SEM of (a) α -MnO₂ coated by lignin and (b) MnO₂ doped by Al,

Al:Mn=1:1.

Figure S2 (a) HRTEM image and (b) SAED of L+Al@ α -MnO₂

Figure S3 Raman spectra of α -MnO₂ and L+Al@ α -MnO₂.

Figure S4 FT-IR spectrum of α -MnO₂ and L+Al@ α -MnO₂.

Figure S5 (a) XPS spectrum of α -MnO₂. (b) Al@ α -MnO₂ and (c) L+Al@ α -MnO₂. (d)

Mn 2p spectrum of Al@ α -MnO₂ and (e) O 1s spectrum of Al@ α -MnO₂.

Figure S6 TG analysis of α -MnO₂ and L+Al@ α -MnO₂.

Figure S7 (a), (b) Cyclic voltammetry curves of Al@ α -MnO₂ and L@ α -MnO₂ at 0.1 mV·s⁻¹. (c) CV curves of α -MnO₂ at different sweep rates. (d) Rate performance of batteries using α -MnO₂ and L+Al@ α -MnO₂ as the cathode material, respectively. (e), (f), (g) and (h) Charge-discharge profiles of batteries using α -MnO₂, Al@ α -MnO₂, L@ α -MnO₂ and L+Al@ α -MnO₂ at the current densities varying from 0.1 to 5 A·g⁻¹, respectively.

Figure S8 (a) Cycle performance of Al@ α -MnO₂, L @ α -MnO₂ and L+Al@ α -MnO₂ at 1.5A·g⁻¹. (b) Cycle performance of L+Al@ α -MnO₂ with different different initial molar ratios of Al and Mn at 1.5A·g⁻¹.