Supporting Information

Copper-catalyzed in situ Oxidative-coupling for One-pot Synthesis of

5-Aryl-1,4-disubstituted 1,2,3-Triazoles under Mild Conditions

Chao Wang, Qianqian Li, Shilei Wang, Gongming Zhu*, Anlian Zhu and Lingjun Li*

Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.

General Information and Materials	2
Typical experimental procedures	2
Characterization of compounds 4a to 4z	3-9
¹ H and ¹³ C NMR Spectra of compounds 4a to 4z	

General Information and Materials.

Solvents were dried using traditional methods, and freshly distilled prior to use. All reactions were carried out in THF solvent, unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) on silica gel GF254-precoated plates. Compounds were detected under UV light. Solvents were evaporated under reduced pressure and below 40 $^{\circ}$ C (Water bath). 1H NMR and 13C NMR spectra were recorded on 400 or 600 MHz using TMS as internal standard.

Typical experimental procedures

The anhydrous solvent toluene was added into a 10 mL dry reaction bottle under the condition of ice bath, 10 mg (0.15 mmol) of azide, 41 mg (0.6 mmol) of phenylboronic acid and 8 mg (0.17 mmol) of terminal alkyne were added in turn, and then CuCl 1.3 mg (0.015 mmol) and 22 mg (0.15 mmol) of chloramine T. After the raw materials reacted completely, the reaction was extracted three times with water/dichloromethane, the organic phase was washed twice with saturated salt water, the organic phases were combined, dried with anhydrous sodium sulfate, evaporated to dryness and separated by column to obtain the product.

Characterization of compounds 4a to 4z

Compound 4a The title compound was isolated as a pale-yellow solid, M.p.: 98-99 °C ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.0 Hz, 2H), 7.24 – 7.21 (s, 6H), 7.13 (d, J = 7.2 Hz, 2H), 7.02 (d, J = 3.0 Hz, 2H), 5.42 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 144.7, 135.4, 134.0, 131.2, 130.2, 129.7, 129.3, 128.9, 128.6, 128.3, 128.1, 127.8, 127.6, 126.8, 52.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₇N₃Na⁺: 334.1315, Found: 334.1316.

Compound 4b The title compound was isolated as a pale-yellow solid, M.p.: 125-126 °C ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.39 (m, 5H), 7.25 – 7.27 (m, 3H), 7.16 – 7.15 – 7.13 (m, 2H), 7.07 – 7.01 (m, 4H), 5.40 (s, 2H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.8, 137.6, 135.6, 133.7, 130.3, 129.7, 129.4, 129.2, 128.8, 128.3, 128.2, 128.0, 127.6, 126.9, 52.1, 21.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₂H₁₉N₃Na⁺: 348.1471, Found: 348.1473.

Compound 4c The title compound was isolated as a white solid, M.p.: 142-143 °C.¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 5H), 7.26 – 7.23 (m, 3H), 7.23 (d, J = 1.6 Hz, 1H), 7.21 (s, 1H), 7.13 – 7.10 (m, 2H), 7.03 – 7.01 (m, 2H), 5.40 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 143.7, 135.3, 134.1, 133.7, 130.1, 130.0, 129.5, 129.4, 128.9, 128.8, 128.4, 128.1, 127.7, 127.7, 52.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₆ClN₃Na⁺: 368.0925, Found:368.0924.

Compound 4d The title compound was isolated as a white solid, M.p.: 144-145 °C.¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, J = 7.4 Hz, 1H), 7.40 – 7.32 (s, 6H), 7.22 – 7.20 (s, 3H), 7.08 (d, J = 7.2 Hz, 2H), 6.99 – 6.97 (s, 2H), 5.35 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 142.7, 134.3, 133.2, 130.6, 129.1, 129.0, 128.3, 127.8, 127.2, 126.6, 120.9, 51.2. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₆BrN₃Na⁺:412.0420, Found: 412.0421.

Compound 4e The title compound was isolated as a pale-yellow solid, M.p.: 98-99 °C.¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.30 (m, 5H), 7.19 – 7.15 (m, 3H), 7.08 – 7.02 (m, 2H), 6.95 (dd, J = 6.4, 2.8 Hz, 2H), 6.86 (t, J = 8.8 Hz, 2H), 5.34 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 163.3, 161.5, 143.8, 135.3, 133.7, 130.1, 129.9,

129.4, 128.8, 128.5 (d, J = 8.0 Hz), 128.3, 127.7, 127.6, 127.2 (d, J = 3.2 Hz), 115.6, 115.5, 52.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₆FN₃Na⁺: 352.1220, Found: 352.1221.

Compound 4f The title compound was isolated as a white solid, M.p.: 109-110 °C.¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.78 (m, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.57 (dd, J = 7.8, 1.6 Hz, 2H), 7.51 – 7.43 (m, 3H), 7.39 (dd, J = 9.2, 5.8 Hz, 3H), 7.27 – 7.20 (m, 4H), 7.17 – 7.11 (m, 2H), 5.58 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 144.7, 134.1, 133.2, 133.1, 132.9, 131.0, 130.3, 129.8, 129.3, 128.8, 128.6, 128.1, 128.0, 127.8, 127.8, 126.9, 126.6, 126.5, 125.2, 52.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₅H₁₉N₃Na⁺: 384.1471, Found: 384.1471.

Compound 4g The title compound was isolated as a white solid, M.p.: 143-144 °C.¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.78 (m, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.50 – 7.42 (m, 5H), 7.40 – 7.36 (m, 3H), 7.23 – 7.20 (m, 1H), 7.16 – 7.11 (m, 2H), 7.07 (d, J = 8.0 Hz, 2H), 5.56 (s, 2H), 2.30 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 144.8, 137.6, 133.8, 133.2, 133.0, 132.9, 130.3, 129.8, 129.3, 129.3, 128.8, 128.2, 128.1, 128.1, 127.8, 126.8, 126.8, 126.5, 126.5, 125.2, 52.3, 21.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₆H₂₁N₃Na⁺: 398.1628, Found: 398.1627.

Compound 4h The title compound was isolated as a pale-yellow solid, M.p.: 123-124 °C.¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.79 (m, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.54 – 7.44 (m, 5H), 7.43 – 7.36 (m, 3H), 7.22 (t, J = 8.6 Hz, 3H), 7.13 – 7.12 (m, 2H), 5.56 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 143.7, 134.2, 133.7, 133.2, 133.1, 132.7, 130.2, 130.1, 129.6, 129.4, 128.8, 128.1, 127.8, 127.7, 126.9, 126.6, 126.6, 125.2, 52.4. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₅H₁₈ClN₃Na⁺: 418.1081, Found: 418.1080.

Compound 4i The title compound was isolated as a white solid, M.p.: 134-135 °C.¹H NMR (600 MHz, CDCl₃) δ 7.80-7.89 (m, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.70 – 7.68 (m, 1H), 7.53 – 7.46 (m, 3H), 7.41 (dt, J = 18.8, 7.8 Hz, 7H), 7.22 – 7.20 (m, 1H), 7.12 (d, J = 7.6 Hz, 2H), 5.56 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 143.7, 134.3, 133.2, 133.1, 132.7, 131.8, 130.1, 130.1, 130.0, 129.4, 128.8, 128.3,

128.0, 127.8, 127.7, 126.9, 126.6, 126.6, 125.1, 121.9, 52.4. HRMS (ESI) m/z calculate for $([M+Na]^+) C_{25}H_{18}BrN_3Na^+$: 462.0576, Found: 462.575.

Compound 4j The title compound was isolated as a white solid, M.p.: 100-101 \mathbb{C} .¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 1H), 7.76 – 7.75 (m, 1H), 7.70-7.68 (m, 1H), 7.51 – 7.44 (m, 5H), 7.40 – 7.37 (m, 3H), 7.22 – 7.21 (m, 1H), 7.14 (d, J = 7.6 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 5.56 (s, 2H), 3.77 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 159.4, 144.8, 133.3, 133.3, 133.1, 132.9, 130.3, 129.8, 129.3, 128.8, 128.2, 128.1, 127.8, 126.8, 126.6, 126.5, 125.2, 123.7, 114.0, 55.3, 52.4 . HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₆H₂₁N₃NaO⁺: 414.1577, Found: 414.1576.

Compound 4k The title compound was isolated as a pale-yellow solid, M.p.: 128-129 °C.¹H NMR (400 MHz, CDCl₃) δ 7.79 (ddd, J = 20.4, 9.8, 6.0 Hz, 2H), 7.73 – 7.66 (m, 1H), 7.46 (ddq, J = 10.6, 4.2, 2.0 Hz, 4H), 7.42 – 7.35 (m, 3H), 7.23 – 7.19 (m, 3H), 7.01 – 6.99 (m, 2H), 5.54 (s, 2H), 2.42 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 143.6, 140.20, 134.4, 133.2, 133.1, 132.8, 131.7, 130.2, 130.0, 128.8, 128.3, 128.0, 127.8, 126.9, 126.6, 126.5, 125.2, 124.5, 121.8, 52.3, 21.6. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₆H₂₀BrN₃Na⁺: 476.0733, Found: 476.0735.

Compound 4l The title compound was isolated as a pale-yellow solid, M.p.: 85-86 °C.¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 7.2 Hz, 2H), 7.42 – 7.38 (m, 1H), 7.37 – 7.35 (s, 2H), 7.22 – 7.13 (m, 5H), 6.71 (d, J = 8.6 Hz, 2H), 4.37 (t, J = 6.6 Hz, 2H), 3.94 (t, J = 5.6 Hz, 2H), 2.29 (p, J = 6.0 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 163.4, 144.5, 141.8, 134.2, 130.9, 130.0, 129.9, 129.6, 128.6, 127.9, 127.9, 126.9, 126.0, 114.5, 65.1, 44.7, 29.5. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₃H₂₀N₄NaO₄⁺: 439.1377, Found:439.1378.

Compound 4m The title compound was isolated as a pale-yellow solid, M.p.: 115-116 °C.¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.12 (m, 2H), 7.55 – 7.42 (m, 4H), 7.38 (s, 4H), 7.24 (t, J = 1.8 Hz, 1H), 6.83 – 6.75 (m, 2H), 4.44 (t, J = 6.6 Hz, 2H), 4.03-4.00 (m, 2H), 2.40 – 2.34 (m, 2H).¹³C NMR (151 MHz, CDCl₃) δ 163.4, 143.5, 141.8, 134.4, 131.8, 130.2, 129.9, 129.7, 128.4, 127.9, 127.4, 126.0, 122.1, 114.5,

65.0, 44.8, 29.5. HRMS (ESI) m/z calculate for ([M+Na]⁺) $C_{23}H_{19}BrN_4NaO_4^+$:517.0482, Found: 517.0484.

Compound 4n The title compound was isolated as a white solid, M.p.: 95-96 °C.¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 1H), 7.68 (dd, J = 11.6, 8.8 Hz, 2H), 7.53 (d, J = 7.6 Hz, 2H), 7.46 – 7.37 (m, 4H), 7.34 – 7.31 (m, 1H), 7.26 – 7.21 (m, 5H), 7.00 (s, 1H), 6.95 (d, J = 9.0 Hz, 1H), 4.46 (t, J = 6.8 Hz, 2H), 4.03 (t, J = 5.6 Hz, 2H), 2.42 (p, J = 6.2 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 156.4, 144.3, 134.5, 134.3, 131.0, 130.1, 129.7, 129.4, 129.4, 129.1, 128.5, 127.9, 127.8, 127.7, 126.9, 126.8, 126.5, 123.8, 118.8, 106.7, 64.0, 45.0, 29.7. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₇H₂₃N₃NaO⁺: 428.1733, Found:428.1735.

Compound 4o The title compound was isolated as a white solid, M.p.: 148-149 °C.¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 1H), 7.71 – 7.67 (m, 2H), 7.43 (dd, J = 12.2, 8.0 Hz, 3H), 7.38 – 7.37 (m, 2H), 7.35 – 7.33 (m, 1H), 7.18 – 7.17 (m, 2H), 7.11 (d, J = 7.6 Hz, 2H), 6.99 (s, 1H), 6.96 – 6.94 (m, 1H), 4.46 (t, J = 6.8 Hz, 2H), 4.02 (t, J = 5.6 Hz, 2H), 2.43 – 2.39 (m, 2H), 2.38 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 156.4, 143.3, 140.1, 134.6, 134.5, 131.7, 130.3, 130.2, 129.8, 129.4, 129.1, 128.4, 127.7, 126.9, 126.6, 124.4, 123.9, 121.8, 118.7, 106.7, 64.0, 45.0, 29.8, 21.5. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₈H₂₄BrN₃NaO⁺: 520.0995, Found: 520.0997.

Compound 4p The title compound was isolated as a pale-yellow solid, M.p.: 81-82 °C.¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 2H), 7.43 – 7.31 (m, 3H), 7.18 – 7.14 (m, 3H), 7.08-7.06 (m, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.71 – 6.64 (m, 2H), 5.26 (s, 2H), 3.68 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 159.6, 144.7, 133.8, 131.1, 130.3, 129.8, 129.3, 129.2, 128.6, 128.1, 127.8, 127.5, 126.8, 114.2, 55.4, 51.7. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₂H₁₉N₃NaO⁺: 364.1420, Found: 364.1422.

Compound 4q The title compound was isolated as a white solid, M.p.: 128-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.40 (m, 2H), 7.38 – 7.36 (m, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.03 – 6.93 (m, 4H), 6.81 – 6.76 (m, 2H), 5.32 (s, 2H), 3.77 (s, 3H), 2.44 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 159.6, 143.6, 140.1, 134.1, 131.7, 130.2, 130.1, 130.0, 129.2, 128.3, 127.5, 124.6, 121.8, 114.2, 55.4, 51.6, 21.6. HRMS (ESI) m/z calculate for $([M+Na]^+) C_{23}H_{20}BrN_3NaO^+$: 456.0682, Found: 456.0680.

Compound 4r The title compound was isolated as a white solid, M.p.: 120-121 °C.¹H NMR (400 MHz, CDCl₃) δ 7.50-7.46 (m, 1H), 7.44 – 7.40 (m, 2H), 7.40 – 7.35 (m, 4H), 7.22 – 7.21 (m, 3H), 6.96-6.91 (m, 4H), 4.38 ((t, *J* = 7.2 Hz, 2H), 3.16 (t, *J* = 7.4 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 143.2, 137.2, 134.5, 131.7, 130.1, 130.0, 129.9, 129.5, 128.9, 128.9, 128.3, 127.7, 127.1, 121.8, 49.6, 36.7. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₂H₁₈N₃Na⁺: 426.0576, Found: 426.0574. **Compound 4s** The title compound was isolated as a pale-yellow solid, M.p.: 101-102 °C.¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 7.2 Hz, 2H), 7.52 – 7.46 (m, 3H), 7.29 (t, *J* = 7.0 Hz, 2H), 7.26 – 7.21 (m, 4H), 6.82 (t, *J* = 7.8 Hz, 2H), 5.43 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 162.40 (d, *J* = 6.9 Hz), 160.73 (d, *J* = 7.4 Hz), 144.3, 134.1, 130.91 (dd, *J* = 22.5, 12.2 Hz), 130.2, 129.8, 129.4, 128.5, 127.9, 127.8, 126.83, 111.55 (dd, *J* = 20.8, 4.6 Hz), 111.04 (t, *J* = 18.4 Hz), 40.37 (t, *J* = 3.6 Hz).HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₅F₃N₃Na⁺: 370.1126, Found: 370.1125.

Compound 4t The title compound was isolated as a white solid, M.p.: 139-140 °C.¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 7.33 – 7.28 (m, 3H), 7.21 – 7.19 (m, 2H), 6.89 – 6.85 (m, 2H), 5.43 (s, 2H), 2.48 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 162.4, 160.7, 143.2, 140.2, 134.4, 131.7, 131.0, 130.9 (t, J = 10.3 Hz), 130.2 (d, J = 9.3 Hz), 130.2, 129.9, 128.3, 124.4, 121.8, 111.6 (dd, J = 20.9, 4.4 Hz), 111.0, 40.2, 21.6. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₄BrF₂N₃Na⁺:448.0231, Found: 448.0233

Compound 4u The title compound was isolated as a white solid, M.p.: 86-87 °C.¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 7.8 Hz, 2H), 7.26 – 7.23 (m, 4H), 7.05 (d, J = 1.8 Hz, 2H), 7.02 – 7.01 (m, 2H), 5.39 (s, 2H), 2.43 (s, 3H) ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 144.4, 141.8, 134.2, 130.8, 130.0, 129.9, 129.5, 128.6, 127.9, 126.9, 125.9, 114.5, 65.0, 44.7, 29.5. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₂H₁₈BrN₃Na⁺:426.0576, Found: 426.0575.

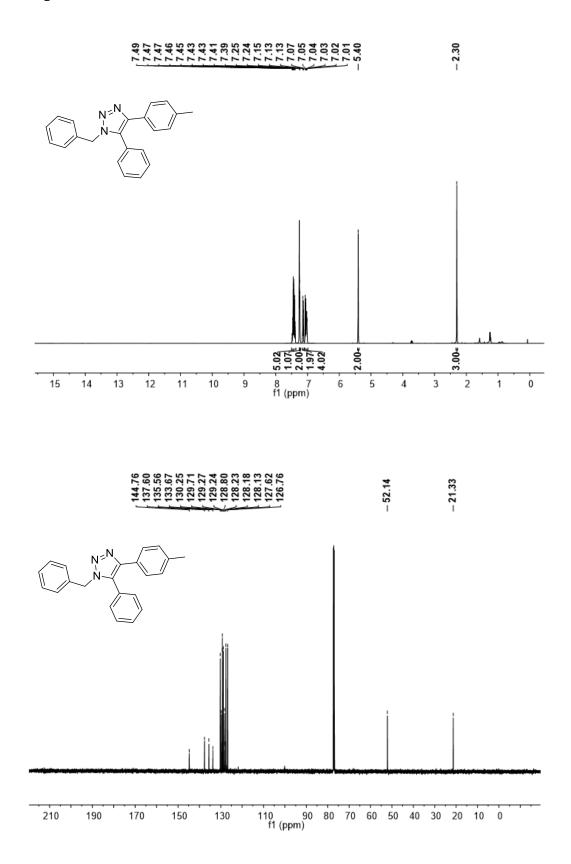
Compound 4v The title compound was isolated as a white solid, M.p.: 92-93 °C.¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.32 – 7.26 (m, 4H), 7.18-7.16 (m, 3H), 6.94 – 6.90 (m, 2H), 6.90 – 6.85 (m, 2H), 5.30 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 144.0, 135.1, 133.0, 132.8, 131.9, 131.7, 129.7, 129.0, 128.5, 128.4, 127.5, 126.6, 124.6, 122.2, 52.4. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₅Br₂N₃Na⁺: 491.9504, Found: 491.9503.

Compound 4w The title compound was isolated as a white solid, M.p.: 115-116 °C.¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 4H), 7.22 – 7.18 (m, 3H), 7.07 – 6.99 (m, 4H), 6.95-6.93 (m, 2H), 5.32 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 164.5 , 162.8, 144.0, 135.2, 133.1, 132.1 (d, J = 8.6 Hz), 131.8, 129.8, 128.9, 128.5, 128.3, 127.5, 123.6, 122.1, 116.8, 116.7, 52.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₂₁H₁₅BrFN₃Na⁺: 430.0326, Found: 430.0325.

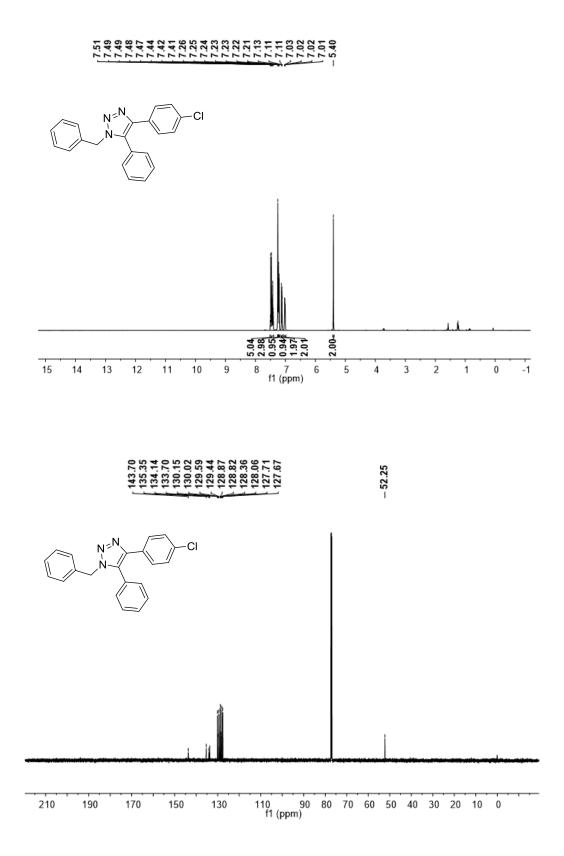
Compound 4x The title compound was isolated as a colorless liquid. 1H (400 MHz, CDCl3) 7.35-7.33 (m, 3H), 7.18-7.16 (m, 3H), 7.05-7.03 (m, 2H), 6.94-6.93 (m, 2H), 5.33 (s,2H), 2.55-2.51 (t, J = 8.0 Hz,3H), 1.53 (s, 2H), 1.19-1.17 (m, 4H) 0.76-0.73(m, 3H). 13C (101 MHz, CDCl3) 135.70, 129.72, 129.21, 128.83, 128.66, 127.99, 127.37, 77.34, 77.03, 76.71, 51.96, 31.48, 29.29, 25.05, 22.32, 13.96.HRMS (ESI) m/z calculate for ($[M+Na]^+$) C₂₀H₂₃N₃Na⁺: 328.19, Found: 328.45.


Compound 4y The title compound was isolated as a pale-yellow solid, M.p.: 98-99 °C.¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.50 – 7.39 (m, 5H), 7.26 – 7.21 (m, 3H), 7.15 – 7.11 (m, 2H), 7.02 (dd, J = 6.6, 2.8 Hz, 2H), 6.89 – 6.84 (m, 2H), 5.89 – 5.83 (m, 1H), 5.44 – 5.38 (m, 4H), 5.26 – 5.20 (m, 1H), 5.16 (s, 2H), 4.29 (dd, J = 12.6, 5.0 Hz, 1H), 4.14 (dd, J = 12.6, 2.0 Hz, 1H), 4.01-3.97 (m, 1H), 2.06 (d, J = 3.2 Hz, 6H), 2.02 (s, 3H), 1.82 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.6, 170.1, 169.5, 169.0, 157.9, 145.1, 144.4, 135.5, 133.4, 130.3, 129.8, 129.3, 128.8, 128.3, 128.2, 128.1, 127.6, 124.4, 121.3, 114.9, 85.9, 75.3, 72.8, 70.4, 67.8, 61.9, 61.7, 52.2, 20.8, 20.7, 20.6, 20.3. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₃₈H₃₈N₆NaO₁₀⁺: 761.2542, Found: 761.2543.

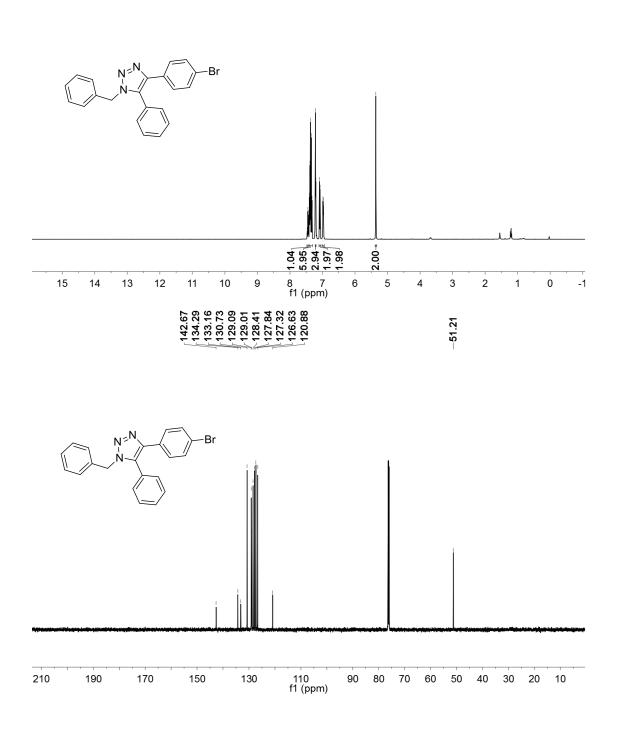
Compound 4z The title compound was isolated as a pale- brown liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 1H), 7.63 – 7.60 (m, 2H), 7.34 – 7.33 (m, 1H),


7.31 – 7.29 (m, 3H), 7.25 – 7.21 (m, 3H), 6.66 – 6.63 (m, 1H), 6.57 (d, J = 2.6 Hz, 1H), 4.46 (t, J = 6.8 Hz, 2H), 3.97 (t, J = 5.8 Hz, 2H), 2.95 – 2.91 (m, 2H), 2.57 (dd, J = 18.8, 8.6 Hz, 1H), 2.51 (s, 3H), 2.47 (s, 1H), 2.44 (t, J = 8.0 Hz, 1H), 2.40 – 2.37 (m, 2H), 2.30 (t, J = 8.4 Hz, 1H), 2.19 (dd, J = 18.6, 8.8 Hz, 1H), 2.14 – 2.00 (m, 3H), 1.72 – 1.58 (m, 3H), 1.54 – 1.44 (m, 2H), 0.97 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 221.1, 156.5, 144.2, 139.8, 137.8, 134.3, 132.4, 131.2, 130.1, 129.9, 128.5, 127.7, 126.8, 126.5, 124.8, 114.4, 112.2, 64.1, 50.5, 48.1, 45.0, 44.0, 38.4, 36.0, 31.7, 29.8, 29.7, 26.6, 26.0, 21.7, 21.6, 13.9. HRMS (ESI) m/z calculate for ([M+Na]⁺) C₃₆H₃₉N₃NaO₂⁺: 568.2934, Found: 568.2935

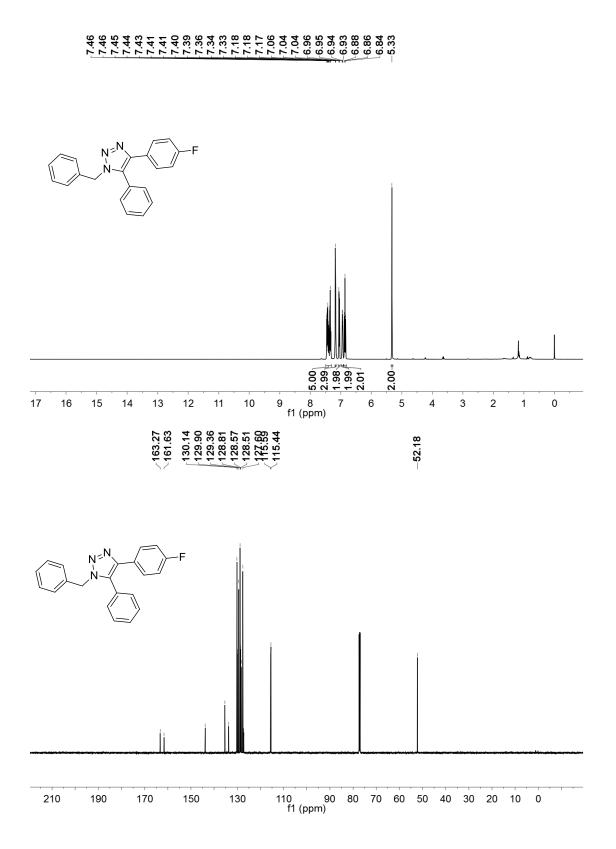
Nuclear magnetic spectrum


Compound 4a of ¹H and ¹³C

Compound 4b of ¹H and ¹³C

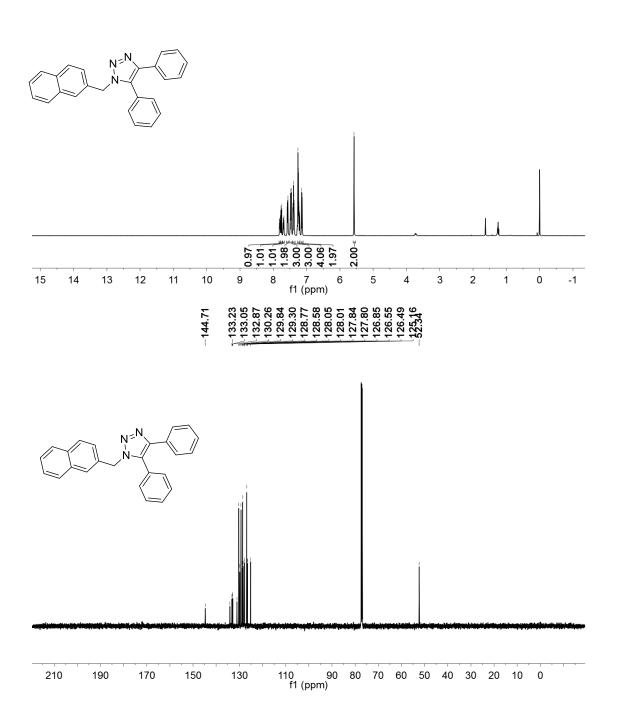


Compound 4c of ¹H and ¹³C

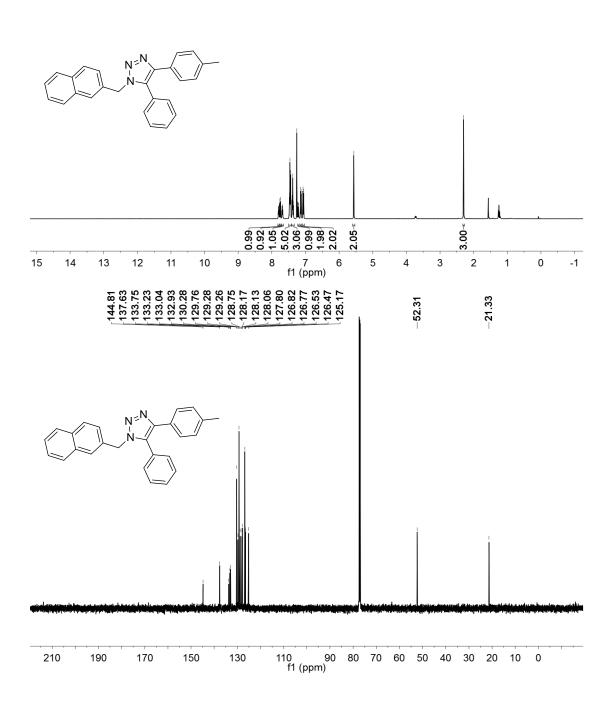


Compound 4d of ¹H and ¹³C

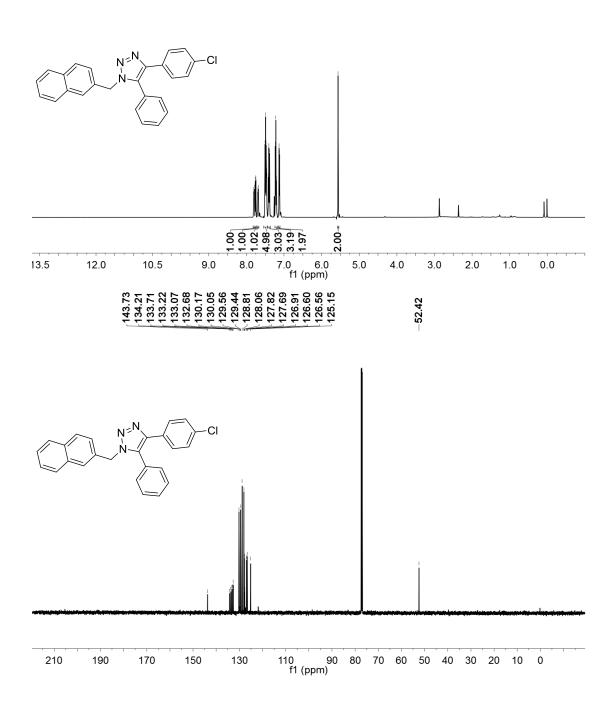
7.477.457.457.457.457.437.437.437.737.327.327.327.327.327.327.327.327.327.327.327.227.227.227.20



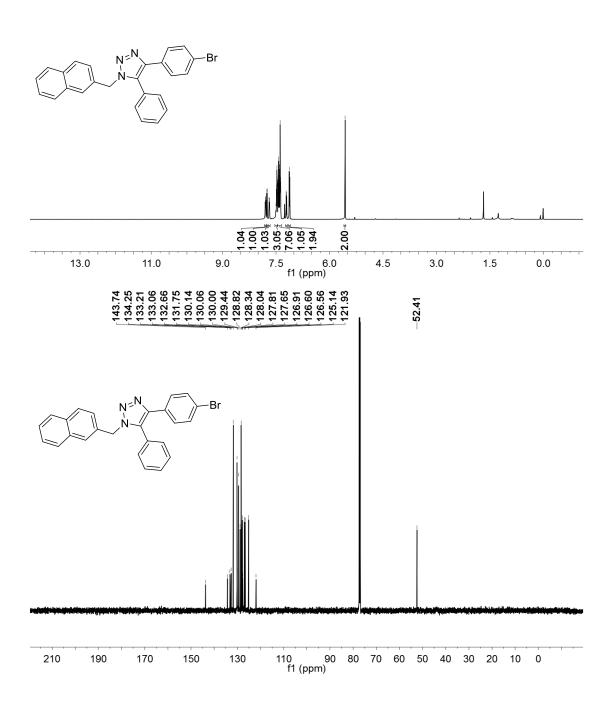
Compound 4e of ¹H and ¹³C

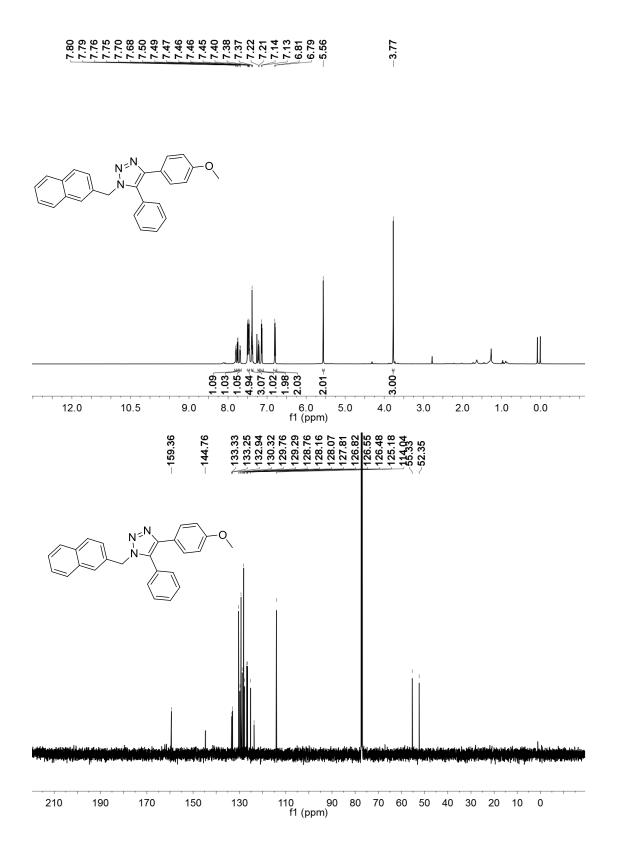


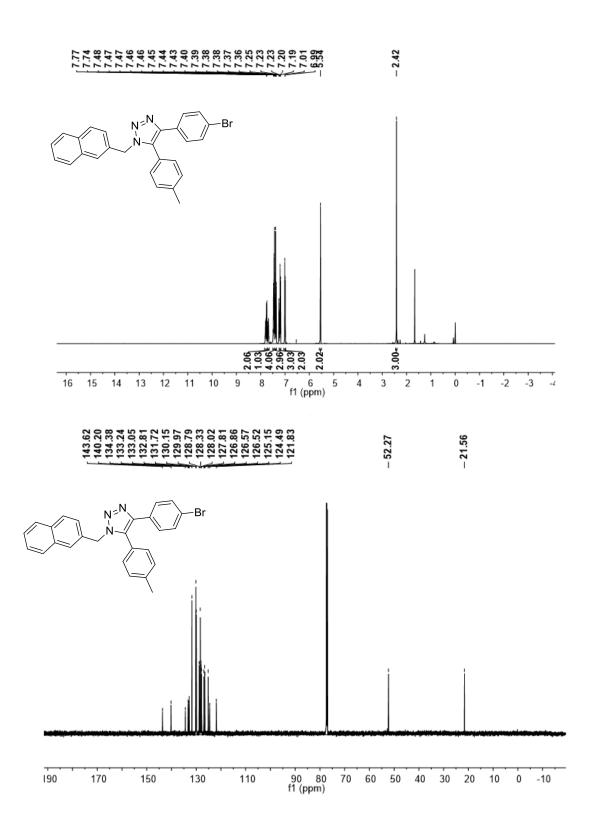
Compound 4f of ¹H and ¹³C



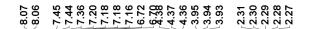
2.30 2.10

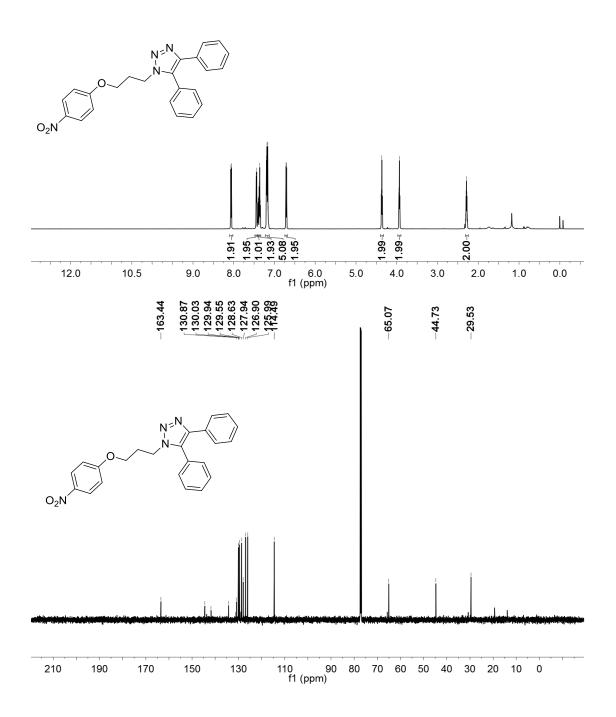



Compound 4h of ¹H and ¹³C

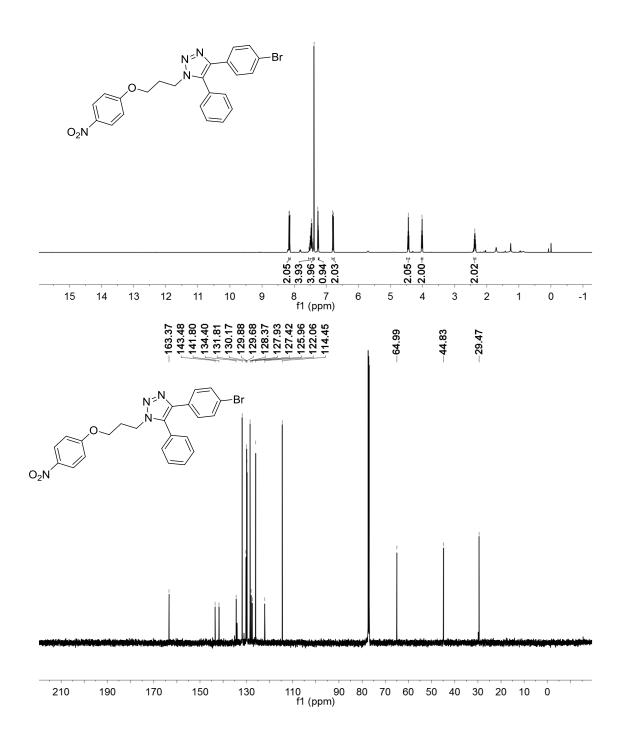


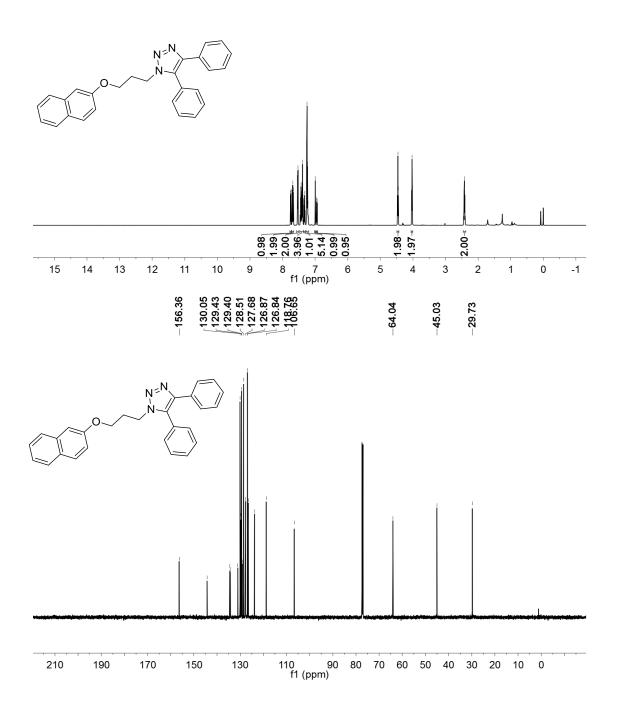
Compound 4i of ¹H and ¹³C

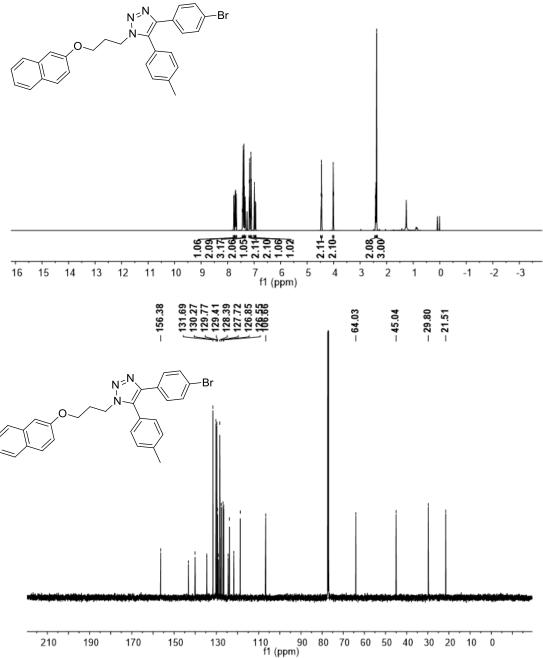


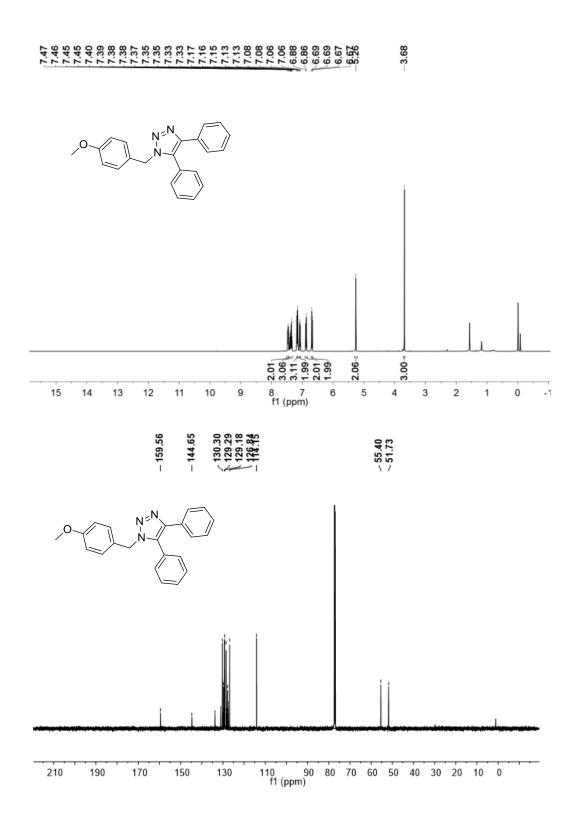


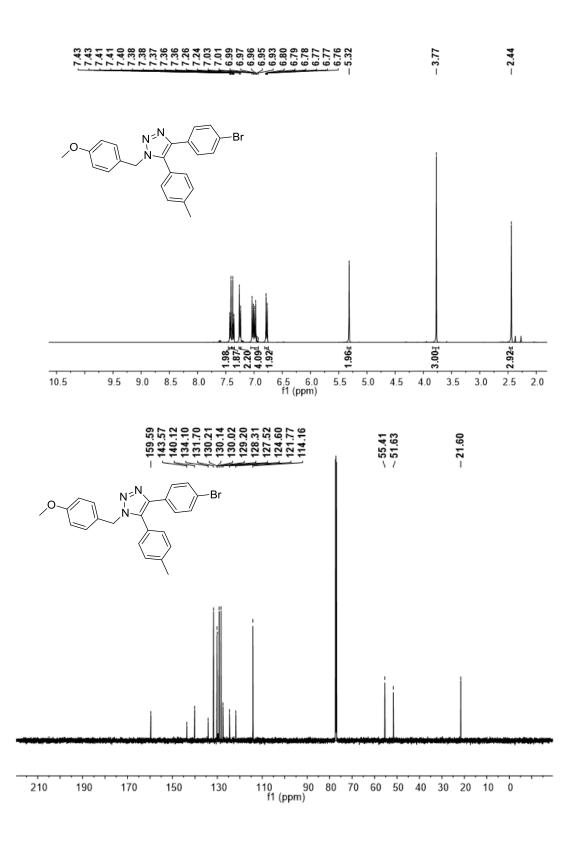
Compound 4k of ¹H and ¹³C

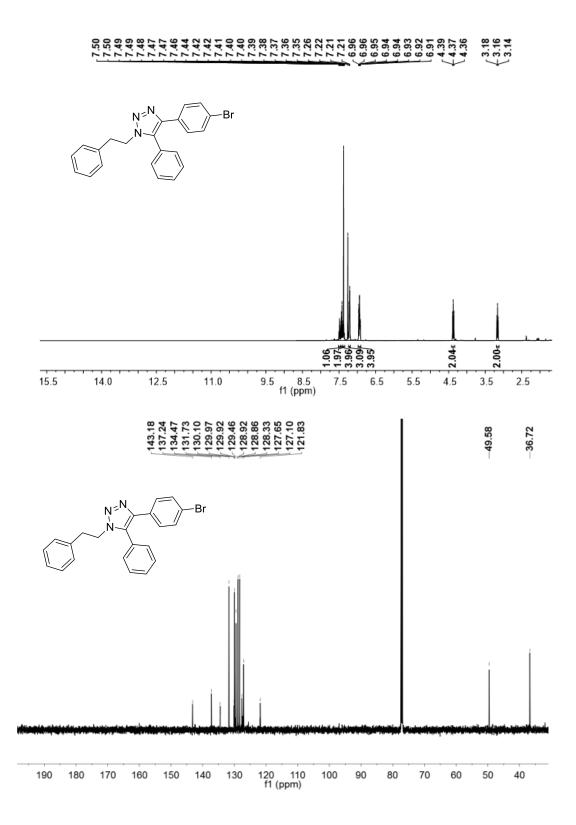

Compound 4l of ¹H and ¹³C


Compound 4m of ¹H and ¹³C

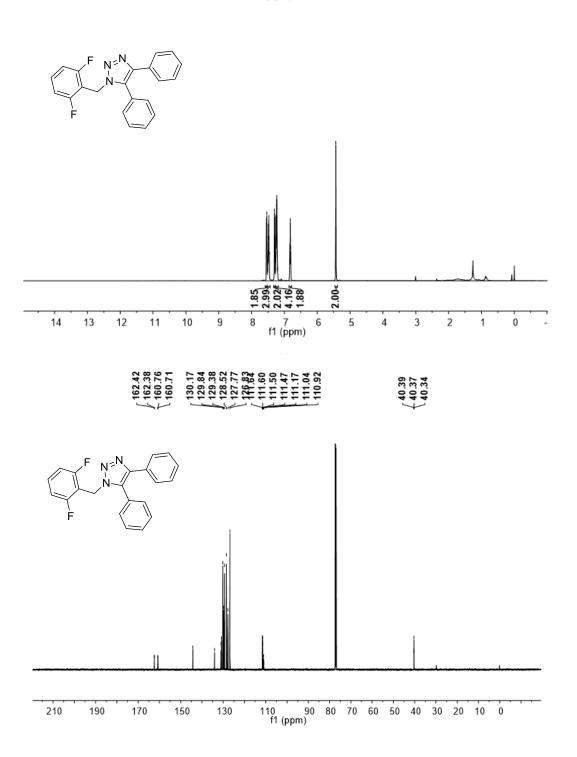

8.14


Compound 4n of ¹H and ¹³C

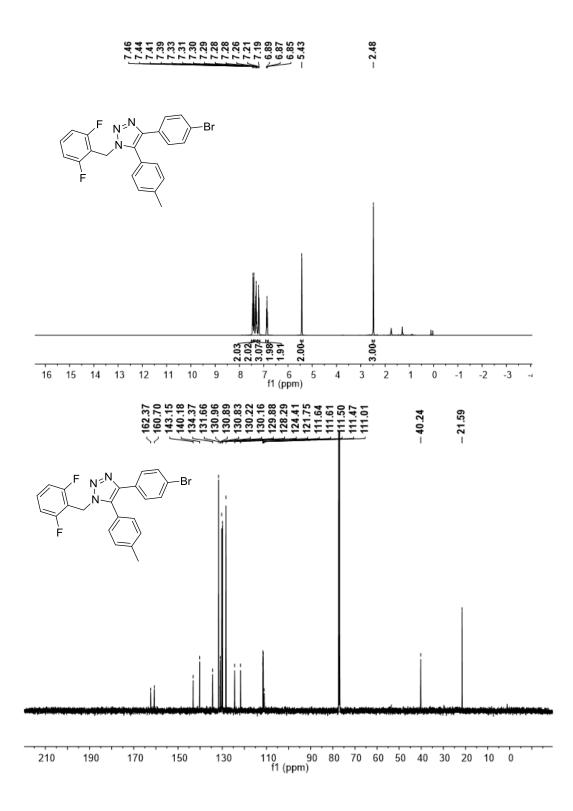



Compound 4p of ¹H and ¹³C

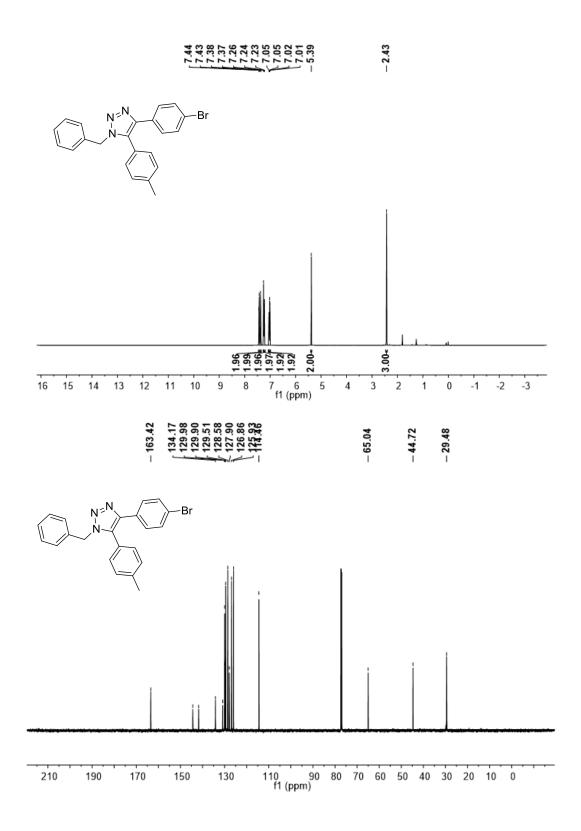
Compound 4q of ¹H and ¹³C

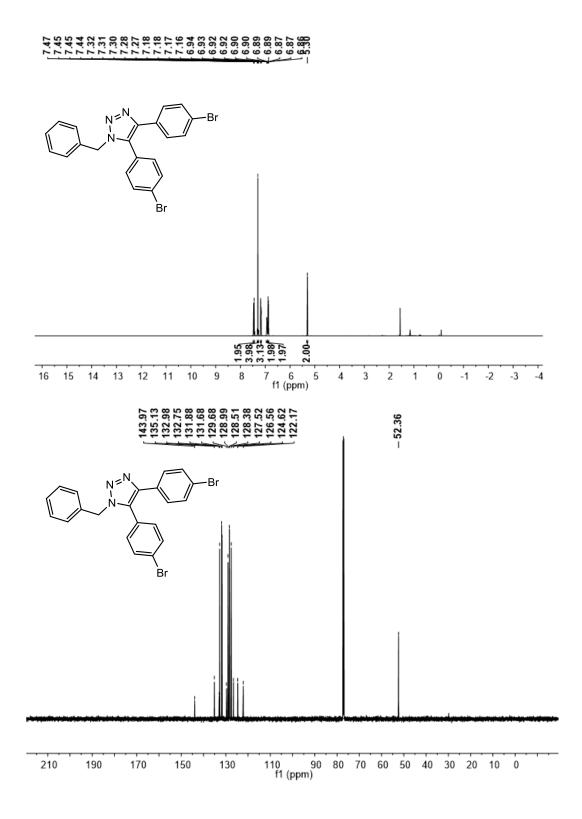


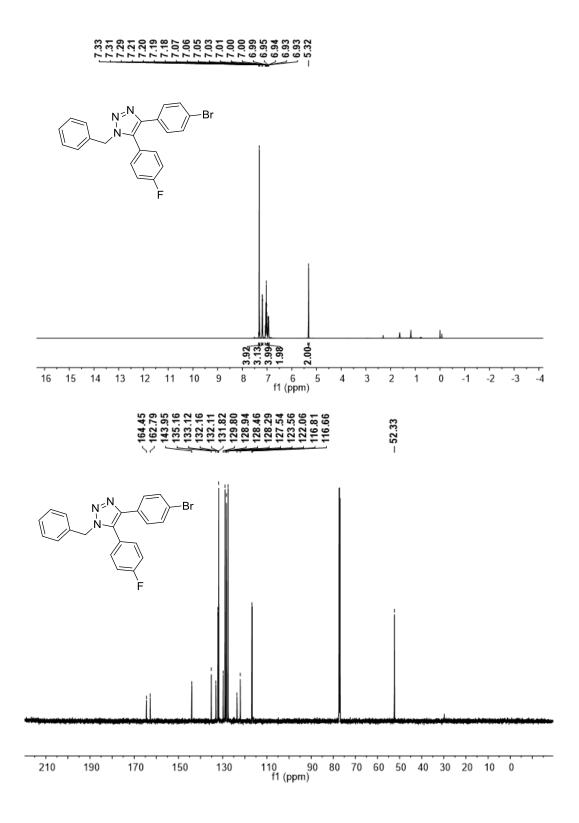
Compound 4r of ¹H and ¹³C

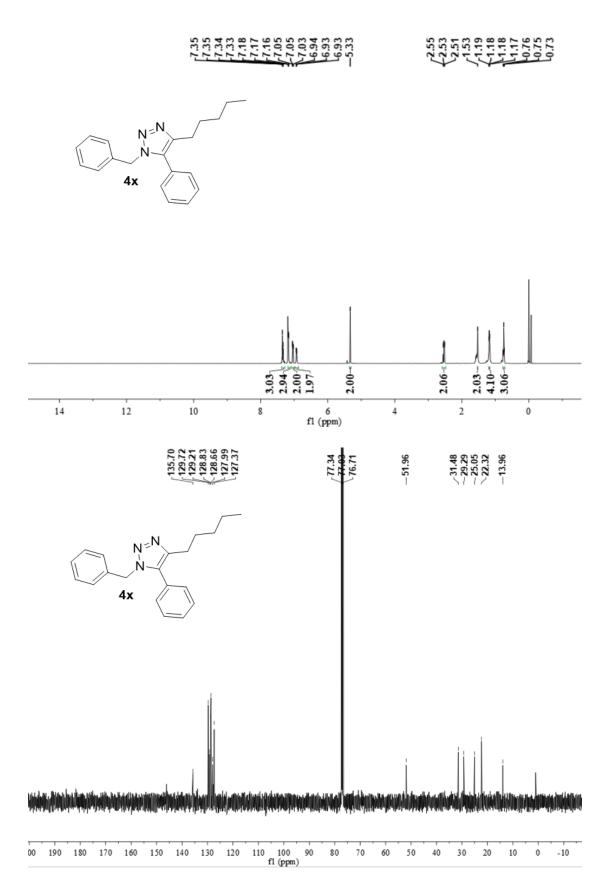


Compound 4s of ¹H and ¹³C


7.557.577.577.487.487.467.7247.287.287.287.287.287.287.287.287.287.287.287.287.287.227.287.227.287.22

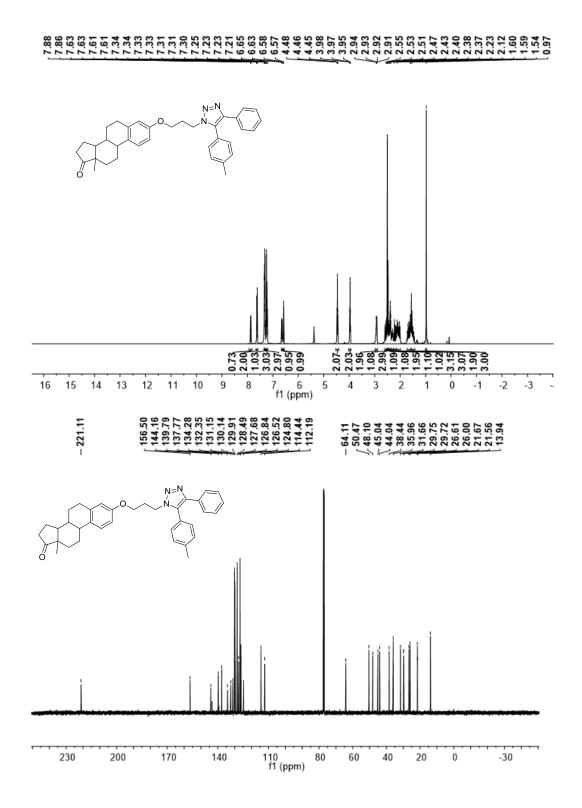

Compound 4t of ¹H and ¹³C


Compound 4u of ¹H and ¹³C


Compound 4v of ¹H and ¹³C

Compound 4w of ¹H and ¹³C

Compound 4x of ¹H and ¹³C



Compound 4y ¹H and ¹³C

Compound 4z of ¹H and ¹³C

