Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Rice husk biochar modified-CuCo₂O₄ as an efficient

peroxymonosulfate activator for non-radical degradation of organic pollutants from aqueous environment

Kai Xie^{ab}, Ruirui Han^c, Ping Sun^a, Hui Wang^a, Yingsen Fang^{*a}, Zhicai Zhai^a, Danzhu Ma^b, Hui Liu ^{*a}

^a College of Biological, Chemical Sciences and Engineering, Jiaxing University,

Zhejiang Jiaxing 314001, PR China

^b College of Petroleum Engineering, Liaoning Petrochemical University,

Liaoning Fushun 113001, PR China

^c College of of Advanced Materials and Engineering, Jiaxing Nanhu University,

Zhejiang Jiaxing 314001, PR China

Fig. S1. XRD patterns of CuO, $\mathrm{Co_2O_3},$ and recycle RHBC-CuCo_2O_4.

Fig. S2. N₂ sorption isotherms and pore size distributions of different materials (RHBC, CuCo₂O₄, RHBC-CuCo₂O₄).

Fig S3. A possible pathway of OG oxidation degradation.

Fig S4. Biodegradation efficiency of RHBC-CuCo₂O₄ for different pollutant. Condition: [ACT] = 50 mg/L, [STZ] = 20 mg/L, [BPA] = 20 mg/L, [RhB] = 50 mg/L, [catalyst] = 100 mg/L, [PMS] = 307 mg/L, and T = 25 °C.

Table S1. Surface porosity of various materials.

Catalysts	$SSA(m^2/g)$	Pore size (nm)	Pore volume (cm^{3}/g)
RHBC	128.6	5.12	0.165
CuCo ₂ O ₄	72.6	12.01	0.218
RHBC- CuCo ₂ O ₄	142.9	8.81	0.315

Table S2. Degradation of pollutants by different catalysts.

Preparation method	Catalysts	Pollutant	Oxidants	Initial pH	Ros	Ref.
Sol-gel method	CuCo ₂ O ₄ @kaolin (0.1 g/L)	SIZ (10 mg/L)	PMS (1 mM)	7.0	SO4 ^{•-} , •OH, O2 ^{•- 1} O2	[1]
pyrolysis method	RHBC-CuCo2O4 (0.307 g/L)	STZ (20 mg/L)	PMS (1 mM)	3.4	SO4 ^{•-} , •OH, O2 ^{•-1} O2	This study
hydro-thermal method	GO-CuCo ₂ O ₄ (0.05 g/L)	BPA (22.83 mg/L)	PMS (0.2 mM)	7.0	SO₄• ⁻ , •OH	[2]
pyrolysis method	RHBC-CuCo ₂ O ₄ (0.1 g/L)	BPA (20 mg/L)	PMS (1 mM)	3.4	SO ₄ •-, •OH, O ₂ •- ¹ O ₂	This study
solvothermal method	AC-CuCo ₂ O ₄ (0.2 g/L)	3BF (25.63 mg/L)	PMS (0.4 mM)	10.0	SO4 ^{•-} , •OH, O2 ^{•-} , ¹ O2	[3]
pyrolysis method	RHBC-CuCo ₂ O ₄ (0.1 g/L)	OG (50 mg/L)	PMS (1 mM)	3.4	SO ₄ •-, •OH, O ₂ •-, ¹ O ₂	This study

References

- C. Chen, L. Liu, Y.X. Li, W. Li, L.X. Zhou, Y.Q. Lan, Y. Li, *Chem. Eng. J.*, 2020, **384**, 123257.
 X. Q. Xu, Y. B. Feng, Z. H. Chen, S. B. Wang, G. H. Wu, T. L. Huang, J. Ma, G. Wen, Sep. Purif. Technol., 2020, **251** 117351.
- 3. S. Chen, X. Liu, S. Y. Gao, Y.C. Chen, L.J. Rao, Z. W. Wu, Environ. Res., 2020, 183, 109245.