Supporting Information

Facile Preparation of High Loading Filled PVDF/BaTiO₃ Piezoelectric

Composites for Selective Laser Sintering 3D Printing

Shiping Song, Yijun Li, Qi Wang, Chuhong Zhang*

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute,

Sichuan University, Chengdu, 610065, China

Email: <u>chuhong.zhang@scu.edu.cn</u>

1. The flowability of PVDF and PVDF/BaTiO₃ powder

Fig. S1. Flowability test results of PVDF and PVDF/ $BaTiO_3$ powder: (a) test curves

of stability and sensitivity to flow rate; (b) compressibility test curves; (c)

permeability test curves.

2. The tensile properties of SLS parts

Fig. S2 The tensile strength and elongation at break of SLS parts.

3. The crystallization behaviors of the PVDF/BaTiO₃ composite powder

Fig. S3. (a) The DSC curves and (b) FT-IR spectra of PVDF/BaTiO₃ composites with

different melting degree.

4. The ferroelectric properties of BT50 part

Fig. S4. The P-E hysteresis loop of BT50 part.

5. The piezoelectric performance of SLS parts and molded parts

Fig. S5. (a) Open circuit voltage and (b) short circuit current of SLS parts and molded

parts.

6. The output power of various SLS parts

Fig. S6. The output power of various SLS parts as indicated.