Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Oxygen-Vacancy-Rich BiOCl Materials with Ultra-High Photocatalysis Efficiency by Etching Bismuth Glass

Wenjing Dong^{a,b}, Tianyi Xie^a, Zhilun Wu^d, Haiyi Peng^a, Haishen Ren^a, Fancheng Meng^{c,*},

Huixing Lin^{a,b,*}

a. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of

Ceramics, Chinese Academy of Sciences, Shanghai 201800, China.

b. Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare

Earth Functional Materials, Shanghai Normal University, Shanghai, 200234,

China

c. College of Materials Science and Engineering, Chongqing University of Technology,

Chongqing 400054, China

d. United Microelectronics Center LTD

Corresponding authors: mengfancheng@cqut.edu.cn, huixinglin@mail.sic.ac.cn

- 1. Figure S1. Schematic diagram illustrating formation process of as-prepared BiOCl samples.
- 2. Figure S2. Nitrogen adsorption-desorption isotherm of as-prepared BiOCl samples.
- 3. Figure S3. Cyclic photocatalytic RhB degradation test using flower-shaped BiOCl-NaCl.
- 4. Table S1. Parameters showing XPS result of as-prepared BiOCl samples.

5. **Table S2.** Comparison with respect to specific surface area, average pore size and pore volume of as-prepared BiOCl samples.

6. **Table S3.** Pseudo-first-order rate constant for RhB photocatalytic oxidation using different photocatalysts.

7. **Table S4.** Comparison of the obtained specific surface area and photocatalysis performance results with literature data of the catalysts.

Figure S1. Schematic diagram illustrating formation process of as-prepared BiOCl samples.

Figure S2. Nitrogen adsorption-desorption isotherm of as-prepared BiOCl samples.

Figure S3. Cyclic photocatalytic RhB degradation test using flower-shaped BiOCl-NaCl.

	Bi 4f	Cl 2p	O 1s	C 1s
BiOC1-HC1	16.88	18.39	29.55	35.17
BiOCl-NaCl	15.51	16.55	31.4	36.55
BiOCl-HCl-2	13.69	13.85	35.8	36.66
BiOCl-NaCl-2	15.69	16.36	40.96	26.98

Table S1. Parameters showing XPS result of as-prepared BiOCl samples.

Table S2. Comparison with respect to specific surface area, average pore size and pore volume of as-

prepared BiOCl samples.

Sample	S _{BET} (m ² /g)	Average pore size (nm)	Pore volume (cm ³ /g)
BiOCl-HCl	10.996	322.1	0.167
BiOCl-NaCl	16.094	292.3	0.186
BiOCl-HCl-2	8.795	312.1	0.121
BiOCl-NaCl-2	16.683	363.9	0.078

Table S3. Pseudo-first-order rate constant for RhB photocatalytic oxidation using different

photocatalysts.

Sample	k _{uv} (min ⁻¹)	k _{vis} (min ⁻¹)
BiOCl-HCl	0.13707	0.01266
BiOCl-NaCl	0.16016	0.01658
BiOCl-HCl-2	0.07892	0.00793
BiOCl-NaCl-2	0.1218	0.02221

Table S4. Comparison of the obtained specific surface area and photocatalysis performance results with

literature data of the catalysts.						
Materials	S _{BET}	Catalyst	Pollutant	Light Type	Degradation Rate	Ref.
	(m ² /g)	Amount	content(RhB)			
BiOCI-NaCl	16.094	10mg	10mg/L	Ultraviolet	92.7% in 20min	This
			100ml	light(λ<400nm)		work
				Visible	71.4% in 20min	
				light(λ>400nm)	92.8%in 100min	
BiOCl	-	50mg	20mg/L	Ultraviolet	90% in 140 min	1
			100ml	light(λ<420nm)		

literature	data	of the	catal	ysts.
------------	------	--------	-------	-------

BiOCl	5.6	30mg	10mg/L	UV-vis light	98.1% in 195 min	19
			100ml	(200nm<λ<800nm)		
BiOCl/TU	56.07	20mg	20mg/L	Visible	95% in 20 min	20
			50ml	light(λ>420nm)		
BiOCl	-	20mg	20mg/L	Ultraviolet	100% in 120 min	60
			30ml	light(λ<420nm)		
BiOCl/PVP	23.8	20mg	20mg/L	Ultraviolet	97% in 40 min	61
			30ml	light(λ<380nm)		
BiOCl/Eu ³⁺	-	10mg	20mg/L	Ultraviolet	100% in 120 min	62
			30ml	light(λ =360nm)		
BiOCl/	-	100mg	48mg/L	Visible	94.1% in 120 min	63
ZnSn(OH) ₆			100ml	light(λ >420nm)		
BiOCl/	-	10mg	10mg/L	Visible	99.7% in 180 min	64
CTAB			100ml	light(λ>420nm)		
p-BiOCl/	-	50mg	10mg/L	Visible	97% in 180 min	65
n-ZnFe ₂ O ₄			50ml	light(λ >420nm)		
BiOCl/TiO ₂ /	43.93	100mg	10mg/L	Visible	98.03% in 360 min	66
Clinoptilolite			100ml	light(λ>420nm)		