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Material characterization.

Laboratory powder X-ray diffraction patterns were collected for the samples 

on a Rigaku Ultima IV X-ray diffractometer with Cu K source (40 kV, 40 mA). 

The morphology and structure of the samples were observed on field-emission 

scanning electron microscope (SEM, Quant 250FEG) equipped with energy-

dispersive X-ray (EDX) detector and high-resolution transmission electron 

microscopy at an acceleration voltage of 200 kV (TEM, JEM-2100F). 

Micromeritics Belsorp-max analyzer was applied to measure the Brunauer 

Emmett Teller (BET) surface area and pore size distribution (PSD). X-ray 

photoelectron spectroscopic (XPS) measurements were conducted on an Axis 

Ultra instrument from Kratos using monochromatic Al K radiation. Raman 

scattering spectra were recorded on a laser Raman microscope system 

(Nanophoton RAMANtouch) with an excitation wavelength of 532 nm. 

Electrochemical measurements

All electrochemical measurements were carried out by using a standard 

three-electrode configuration on a Gamry (RDE710) electrochemical workstation, 

where the Ag/AgCl (KCl-saturated) electrode and a carbon rod were used as 

reference and counter electrodes, respectively. To ensure the repeatability of the 

experiment, the working electrode for each of the four catalysts was prepared by 

using under uniform condition. The procedure for the preparation of a working 

electrode was as following: the catalyst powder (5 mg) was dispersed in 0.8 mL 

of ethyl alcohol with 40 µL of Nafion solution (5 wt %, Sigma-Aldrich) under 

sonication to obtain a homogeneous suspension. Then, the catalyst ink (10 μL, 

0.30 mg·cm-2) was droped on the glass carbon electrode surface. For ORR tests, 

Cyclic voltammetry (CV) curves were collected in a N2-saturated or O2-saturated 
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0.1 M KOH electrolyte at a scan rate of 50 mV·s-1. Additionally, the activity for 

ORR was also evaluated via the RDE method by LSV from 0.2 to 1 V in O2-

saturated 0.1 M KOH electrolyte. The ORR stability in O2-saturated 0.1 M KOH 

solution was tested by current versus time (i-t) test with a rotating speed of 1600 

rpm. The ORR performance of the as-prepared catalysts were make a comparison 

with the state-of-the-art commercial Pt/C (20 wt%) electrocatalyst  

(HiSPEC 3000, Alfa Aesar). ○R



S4

Supplementary figures

Figure S1. The EDS image of CoNP@bio-C-a.

Figure S2. SEM image of CoNP@bio-C-a used in the EDS mapping area 

revealing the elemental distribution of Co, C, P, N, and O.
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Figure S3. Raman spectrum of the as-prepared CoNP@bio-C-a.

Figure S4. FT-IR spectrum of the as-prepared CoNP@bio-C-a.
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Figure S5. LSV curves of bio-C at various rotating speeds, respectively. (Inset: 

K–L plots of bio-C at various potentials.)

Figure S6. LSV curves of CoP@bio-C at various rotating speeds, respectively. 

(Inset: K–L plots of CoP@bio-C at various potentials.)
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Figure S7. LSV curves of CoNP@bio-C at various rotating speeds, respectively. 

(Inset: K–L plots of CoNP@bio-C at various potentials.)
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Figure S8. (a) CV and (b) LSV curves of CoP@bio-C-a catalyst in O2-saturated 

0.1 M KOH, respectively. (Inset: K–L plots of CoP@bio-C-a at various 

potentials.)
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Figure S9. (a) CV and (b) LSV curves of N@bio-C-a catalyst in O2-saturated 0.1 

M KOH, respectively. (Inset: K–L plots of N@bio-C-a at various potentials.)
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Figure S10. (a) CV and (b) LSV curves of NP@bio-C-a catalyst in O2-saturated 

0.1 M KOH, respectively. (Inset: K–L plots of NP@bio-C-a at various potentials.)
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Figure S11. (a) CV and (b) LSV curves of CoNP@bio-C-a-700 catalyst in O2-

saturated 0.1 M KOH, respectively. (Inset: K–L plots of CoNP@bio-C-a-700 at 

various potentials.)
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Figure S12. (a) CV and (b) LSV curves of CoNP@bio-C-a-900 catalyst in O2-

saturated 0.1 M KOH, respectively. (Inset: K–L plots of CoNP@bio-C-a-900 at 

various potentials.)
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Figure S13. SEM image (left) and N2 adsorption/desorption isotherms plot (right) 

of CoNP@bio-C-a-700 catalyst.

Figure S14. SEM image (left) and N2 adsorption/desorption isotherms plot (right) 

of CoNP@bio-C-a-900 catalyst.
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Figure S15. (a) CV and (b) LSV curves of CoNP@bio-C-a-N2 catalyst in O2-

saturated 0.1 M KOH, respectively. (Inset: K–L plots of CoNP@bio-C-a-N2 at 

various potentials.)
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Figure S16. Mott–Schottky plots of the CoNP@bio-C-a at an AC frequency of 10 

Hz.

Figure S17. Mott–Schottky plots of the CoNP@bio-C-a-acid at an AC frequency 

of 10 Hz.
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Figure S18. LSV curves of the CoNP@bio-C-a before (black line) and after acid 

leaching (red line).
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Figure S19. (a) Amperometric i–t curves of CoNP@bio-C-a and 20 wt% Pt/C 

and (b) upon the addition of 3 M methanol in O2-saturated 0.1 M KOH solution 

with the rotation speed of 1600 rpm.
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Figure S20. PXRD patterns of CoNP@bio-C-a catalyst before and after stability 
tests.

Figure S21. High-resolution XPS curves of the (a) Co 2p, and (b) O 1s, and (c) P 

2p core levels for CoNP@bio-C-a catalyst before and after stability tests.

Figure S22. SEM images of CoNP@bio-C-a catalyst after stability tests.

Figure S23. Contact angle measurements of (a) bio-C, (b) CoP@bio-C, (c) 

CoNP@bio-C, (d) CoNP@bio-C-a, and (e) N@bio-C-a using the electrolyte of 

distilled water.
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Table S1. Composition (ICP-OES and EDX) of CoNP@bio-C-a catalysts. 

Composition

Sample ICP-OES EDS

CoNP@bio-C-a Co7:P18 Co3:P8

Table S2. The physical parameters of the bio-C, CoP@bio-C, CoNP@bio-C, and 

CoNP@bio-C-a under different tempreture, respectively. 

Sample Surface area (m2 g-1)

bio-C 455.74

CoP@bio-C 291.82

CoNP@bio-C 365.40

CoNP@bio-C-a 475.55

CoNP@bio-C-a-700 128.96

CoNP@bio-C-a-900 499.62
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Table S3. The ORR performance of the bio-C, CoP@bio-C, CoNP@bio-C, 

CoNP@bio-C-a, N@bio-C-a, NP@bio-C-a, and CoP@bio-C-a, CoNP@bio-C-a-

700, CoNP@bio-C-a-900, CoNP@bio-C-a-N2, in alkaline media at 1600 rpm, 

respectively.

Sample Eonset (V) E1/2 (V) JL (mA cm-2) n

bio-C 0.85 0.69/0.80 2.78 2.28

CoP@bio-C 0.85 0.79 3.47 2.37

CoNP@bio-C 0.89 0.82 3.84 2.87

CoNP@bio-C-a 0.92 0.85 5.49 4.06

N@bio-C-a 0.90 0.71 3.06 3.24

NP@bio-C-a 0.85 0.71 3.06 4.01

CoP@bio-C-a 0.89 0.83 3.77 2.71

CoP@bio-C-a-700 0.88 0.79 3.19 2.71

CoP@bio-C-a-900 0.91 0.83 4.34 3.01

CoNP@bio-C-a-N2 0.86 0.65 2.41 2.96

20 wt% Pt/C 0.96 0.86 5.61 4.00
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Table S4. Comparison of the ORR performance for CoNP@bio-C-a catalysts at 

1600 rpm in 0.1 M KOH. 

Catalysts E1/2 
(V)

JL (mA cm-

2) 
Eonset 
(V) 

Tafel 
slope (mV 

dec-1)

n Reference

CoNP@bio-C-a 0.85 5.49 0.92 -- 4.06 This work
Co@Co3O4@C 0.78 4.65 0.90 -- -- Energy Environ. Sci., 2015 

[1]
Co@NG-acid 0.83 4.00 0.90 -- 3.90 Adv. Funct. Mater., 2016 

[2]
Co-NC@CoP-NC 0.78 4.70 0.89 -- 3.97 J. Mater. Chem. A, 2016 

[3]
Co@Co3O4@PPD 0.78 4.20 0.90 -- 3.78~3.

96
Small, 2016 [4]

ZIF/rGO-700-AL 0.81 5.49 0.93 -- -- J. Mater. Chem. A, 2016 
[5]

Co@NCNT 0.83 6.20 1.03 -- -- J. Mater. Chem. A, 2016 
[6]

Co,N-CNF 0.85 5.71 0.92 60 4.00 Adv. Mater., 2016 [7]
Cal-CoZIF-VXC72 0.84 5.92 -- 35 4.00 Adv. Mater., 2017 [8]
Co3O4/Co-N-C 0.91 5.10 0.98 68.5 3.62 Journal of Power Sources, 

2017 [9]
NC@CoPx/PyCNT
s-900

0.80 5.50 0.92 85 3.80 Carbon, 2018 [10]

Co/NPC 0.79 5.46 0.91 -- 3.85~4.
00

J Mater Sci, 2018 [11]

Co3O4/Co@N-G 0.81 5.20 0.96 3.91~3.
96

J. Mater. Chem. A, 2019 
[12]

CoP/NP-HPC 0.83 5.20 0.95 85 3.70 J. Mater. Chem. A, 2020 

[13]
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