Supporting Information

Nanoarchitectonics of p-type BiSbTe with improved figure of merit via introducing PbTe nanoparticles

Yuanyue Li^a, Mengna Ren^a, Zhongsen Sun^{a,*}, and Zhao Yao^{a,*}

^aCollege of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China

^{*}Corresponding author: sunzs@qdu.edu.cn; yao9074@hotmail.com

Fig. S1

Fig. S2

Fig. S2 Schematic of energy bands for PbTe (band gap E_{g1}) and BST (band gap E_{g0}) as well as heterojunction potentials (where E_{C0} and E_{C1} are conduction band bottoms; E_{V0} and E_{V1} are valence band tops).

Table S1

List of the relative density d_r and the Lorenz number L at room temperature for χ (PbTe)/BST ($\chi = 0, 0.25, 0.5$ and 1.0 wt.%).

χ(wt.%)	$d_{\rm r}(\%)^{\rm a}$	L^{b}
0	97	1.46
0.25	97	1.51
0.5	96	1.55
1	98	1.59

^a d_r is relative density, defined as $d_r = d/d_0$, where *d* is measured density and $d_0 (= 6.76 \text{g/cm}^3)$ is theoretical density of BST. For the composite samples χ (PbTe)/BST, its theoretical density is modified as: $d_0 = (1-f)d_1+fd_2$, here $d_1 = d_0$ for BST and $d_2 (= 8.15 \text{ g/cm}^3)$ is theoretical density of PbTe.

 $^{\mathrm{b}}L$ is the Lorenz number.

Table S2

Line	А	В	С	l
	$(10^{-40} \mathrm{S}^3)$	(10^{-18}s/K)	$(10^{-16} \mathrm{s})$	(nm)
orange line	0.69	9.92	1.94	-
purple line	0.69	9.92	1.94	126
wine line	1.41	9.92	1.94	126

Parameters for the calculation of lattice thermal conductivity by using Callaway model