Supplementary Material

Novel Asymmetric Boronium-Cation-Based Ionic Liquids Synthesized for Hypergolic Fuels

Xue Li,^[a] Yin Zhang,^[a] Hongping Li,^[b] Jing Ding,^[a] Hui Wan,^{*[a]} Guofeng Guan^{*[a]}

[a] State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China

[b] Institute for Energy Research of Jiangsu University, Jiangsu University, Jiangsu 212013, China

*Corresponding author:

Hui Wan, E-mail address: wanhui@njtech.edu.cn Tel:+86 25 83587198

Guofeng Guan, E-mail address : guangf@njtech.edu.cn Tel:+86 25 83587198

inthesis procedure
MR and HRMS-ESI Spectra
1

Computational details.		S46
------------------------	--	-----

1.Synthesis procedure

Figure S1 The synthetic route for the asymmetric boronium-cation-based ionic liquids

Synthesis of 1-methylimidazole borane complex

The product was a colorless liquid; yield, 92 %. ¹H NMR(DMSO- d_6 , 400 MHz): $\delta = 1.77 - 2.47$ (m, 3H, BH₃), 3.67 - 3.72 (s, 3H, CH₃), 6.96 - 7.03 (s, 1H, N-CH=CH-N), 7.24 - 7.36 (s, 1H, N-CH=CH-N), 7.92 - 8.40 ppm (s, 1H, N-CH=N); ¹³C NMR (101 MHz, Deuterium Oxide) $\delta = 34.24$, 122.07, 126.31, 137.78 ppm; IR (KBr): $\tilde{\nu} = 3137$, 2358, 2309, 2262, 1549, 1301, 1174, 831, 748 cm⁻¹

Synthesis of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium iodide (2a)

The product 2a was a viscous transparent liquid; yield, 42 %. ¹H NMR(DMSOd₆, 400 MHz): δ = 1.32 – 1.45 (s, 3H, CH₃), 3.79 – 3.84 (s, 3H, CH₃), 4.07 – 4.25 (s, 2H, CH₂), 7.37 – 7.43 (d, 2H, N-CH=CH-N), 7.53 – 7.59 (s, 1H, N-CH=CH-N), 7.66 – 7.70 (s, 1H, N-CH=CH-N), 8.73 – 8.80 (s, 1H,N-CH=N), 8.80 – 8.90 ppm (s, 1H, N-CH=N); ¹³C NMR (101 MHz, DMSO-d6) δ = 15.34 , 34.97 , 43.19 , 121.92 , 123.39 , 124.76 , 124.85 , 137.80 , 138.74 ppm; IR (KBr): $\tilde{\nu}$ = 3445, 3113, 3068, 2959, 2876, 2427, 1544, 1162, 1128 cm⁻¹.

Synthesis of (1-methyl-1H-imidazol-3-ium-1-yl)(1-vinyl-1H-imidazol-3-ium-1-yl) dihydroboronium iodide (2b)

The product 2b was a viscous transparent liquid; yield, 40 %. ¹H NMR(DMSOd₆, 400 MHz): δ = 3.60 – 3.87 (s, 3H, CH₃), 5.24 – 5.35 (dt, 1H, CH2=CH), 5.83 – 5.93 (dd, 1H, CH=CH), 7.17 – 7.28 (dd, 1H, CH2=CH), 7.36 – 7.42 (t, 1H, N-CH=CH-N), 7.49 – 7.56 (m, 2H, N-CH=CH-N), 8.01 – 8.06 (s, 1H, N-CH=CH-N), 8.65 – 8.70 (s, 1H, N-CH=N), 9.01 – 9.06 ppm (s, 1H, N-CH=N);¹³C NMR (101 MHz, DMSO-d₆) δ = 35.45, 107.59, 119.60, 124.03, 125.38, 126.27, 129.41, 138.01, 139.48 ppm; IR: $\tilde{\nu}$ = 3433, 3124, 2972, 2928, 2892, 2433, 1537, 1161, 1130 cm⁻¹.

Synthesis of (1-methyl-1H-imidazol-3-ium-1-yl)(1-propyl-1H-imidazol-3-ium-1-yl) dihydroboronium iodide (2c)

The product 2c was a viscous transparent liquid; yield, 44% . ¹H NMR(DMSOd₆, 400 MHz): δ = 0.74 – 0.85 (td, 3H, CH₃), 1.68 – 1.86 (m, 2H, CH₂), 3.76 – 3.85 (s, 3H, CH₃), 4.02 – 4.12 (q, 2H,CH₂), 7.34 – 7.38 (d, 1H, N-CH=CH-N), 7.38 – 7.42 (d, 1H, N-CH=CH-N), 7.52 – 7.58 (d, 1H, N-CH=CH-N), 7.61 – 7.68 (d, 1H, N-CH=CH-N), 8.66 – 8.75 (s, 1H, N-CH=N), 8.75 – 8.86 ppm (s, 1H, N-CH=N) ¹³C NMR (101 MHz, DMSO-d₆) δ = 10.48, 22.99, 34.95, 49.42, 122.32, 123.51, 124.79, 124.95, 138.18, 138.82 ppm; IR (KBr): $\tilde{\nu}$ = 3445, 3113, 3068, 2965, 2876, 2427, 1544, 1161, 1129 cm⁻¹.

Synthesis of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium iodide (2d)

The product 2d was a viscous transparent liquid; yield, 42%. ¹H NMR (400 MHz, DMSO-d6) : δ = 3.75 – 3.83 (s, 3H, CH₃), 4.74 – 4.83 (dt, 2H, CH₂), 5.18 – 5.34 (m, 2H, CH₂), 5.92 – 6.10 (m, 1H, CH), 7.35 – 7.40 (s, 1H, N-CH=CH-N), 7.40 – 7.44 (s, 1H, N-CH=CH-N), 7.53 – 7.56 (s, 1H, N-CH=CH-N), 7.56 – 7.60 (s, 1H, N-CH=CH-N), 8.69 – 8.75 (s, 1H, N-CH=N), 8.75 – 8.81 ppm (s, 1H, N-CH=N); ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 34.95, 50.05, 119.58, 122.34, 123.49, 124.83, 125.10, 132.31, 138.19, 138.85 ppm; IR: $\tilde{\nu}$ = 3478, 3110, 2941, 2426, 1542, 1423, 1160, 1124 cm⁻¹.

Synthesis of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium iodide (2e)

The product 2e was a viscous transparent liquid; yield, 42 %. ¹H NMR(DMSO- d_6 , 400 MHz): δ = 0.76 – 0.91 (t, 3H, CH₃), 1.14 – 1.26 (dt, 2H, CH₂), 1.68 – 1.80 (p, 2H,

CH₂), 3.78 - 3.80 (s, 3H, CH₃), 4.05 - 4.15 (t, 2H, CH₂), 7.36 - 7.38 (m, 1H, N-CH=CH-N), 7.38 - 7.41 (t, 1H, N-CH=CH-N), 7.54 - 7.56 (s, 1H, N-CH=CH-N), 7.58 - 7.69 (s, 1H, N-CH=CH-N), 8.71 - 8.73 (s, 1H, N-CH=N), 8.76 - 8.88 ppm (s, 1H, N-CH=N); ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 13.77$, 19.37, 32.0, 35.48, 48.16, 122.81, 124.00, 125.30, 125.45, 138.64, 139.32 ppm; IR (KBr): $\tilde{\nu} = 3112$, 3068, 2959, 2933, 2870, 2427, 1543, 1161, 1128 cm⁻¹.

Synthesis of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (3a)

The aqueous solution of **2a**(20 mmol) in 40 ml H₂O was added dropwise into the suspension of silver dicyanamide (4.18 g, 24 mmol) in 60 ml H₂O.In the absence of light ,the mixture should be with vigorously stirring for 24h. After filtration,the water could be removed by rotary evaporation to get a viscous transparent liquid **3a**. 85% Yield. ¹H NMR (400 MHz, DMSO-d6) : $\delta = 1.35 - 1.46$ (td, 3H, CH₃), 3.77 - 3.82 (s, 3H, CH₃), 4.09 - 4.19 (s, 2H, CH₂), 7.33 - 7.43 (m, 2H, N-CH=CH-N), 7.50 - 7.59 (s, 1H, N-CH=CH-N), 7.60 - 7.72 (s, 1H, N-CH=CH-N), 8.65 - 8.71 (s, 1H, N-CH=N), 8.72 - 8.80 ppm (s, 1H, N-CH=N); ¹³C NMR (101 MHz, DMSO-d₆) $\delta = 15.77$, 35.31, 43.72, 119.56, 122.45, 123.96 , 125.41 (d, *J*=9.8), 138.35, 139.30 ppm; ¹¹B NMR (193 MHz, DMSO-d₆) $\delta = -9.20$ ppm; IR (KBr): $\tilde{\nu}$ = 3487, 3135, 3079, 2987, 2429, 2239, 2130, 1546, 1161, 1129 cm⁻¹; HRMS (ESI) m/z: [M]⁺ calcd for C₉H₁₈BN₄⁺: 191.14625, found: 191.14568. [M]⁻ calcd for C₂N₃^{-:}:66.00867, found: 66.00907.

Synthesis of (1-methyl-1H-imidazol-3-ium-1-yl)(1-vinyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (3b)

The following compound was all synthesized like **3a.** The product **3b** was a viscous transparent liquid; yield, 90%. ¹H NMR (400 MHz, DMSO-d6) : δ =3.74 – 3.84 (s, 3H, CH₃), 5.24 – 5.35 (dt, 1H, CH), 5.83 – 5.93 (dd, 1H, CH), 7.17 – 7.28 (dd, 1H, CH), 7.36 – 7.42 (t, 1H, N-CH=CH-N), 7.49 – 7.56 (m, 2H, N-CH=CH-N), 8.01 – 8.06 (s, 1H, N-CH=CH-N), 8.65 – 8.70 (s, 1H, , N-CH=N), 9.01 – 9.06 (s, 1H, N-CH=N). ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 34.89, 107.07, 119.10, 123.54, 124.94, 125.80, 128.96, 137.57, 139.02 ppm; ¹¹B NMR (193 MHz, DMSO-*d*₆) δ = -8.42 ppm; IR (KBr): $\tilde{\nu}$ = 3483, 3135, 3077, 2957, 2872, 2432, 2237, 2136, 1538, 1161, 1130 cm⁻¹;

HRMS (ESI) m/z: $[M]^+$ calcd for $C_9H_{16}BN_4^+$: 189.13060, found: 189.13036. $[M]^-$ calcd for $C_2N_3^-$:66.00867,found: 66.00966.

Synthesis of (1-methyl-1H-imidazol-3-ium-1-yl)(1-propyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (3c)

The product **3c** was a viscous transparent liquid; yield,87%. ¹H NMR (400 MHz, DMSO-d6) : $\delta = 0.79 - 0.85$ (td, 3H, CH₃), 1.74 - 1.83 (q, 2H, CH₂), 3.75 - 3.82 (s, 3H, CH₃), 4.02 - 4.10 (m, 2H, CH₂), 7.33 - 7.37 (s, 1H, N-CH=CH-N), 7.37 - 7.42 (s, 1H, N-CH=CH-N), 7.49 - 7.55 (s, 1H, N-CH=CH-N), 7.59 - 7.65 (s, 1H, N-CH=CH-N), 8.64 - 8.71 (s, 1H, N-CH=N), 8.72 - 8.79 ppm (s, 1H, N-CH=N); ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 10.98$, 23.47, 35.33, 49.96, 119.57, 122.79, 124.00, 125.40 (d, *J*=16.3), 138.70, 139.33 ppm; ¹¹B NMR (193 MHz, DMSO-*d*₆) $\delta = -9.53$ ppm; IR (KBr): $\tilde{\nu}$ = 3488, 3131, 3077, 2968, 2879, 2429, 2239, 2130, 1546, 1161, 1129 cm⁻¹; HRMS (ESI) m/z: [M]⁺ calcd for C₁₀H₁₈BN₄⁺: 205.16190, found: 205.16201. [M]⁻ calcd for C₂N₃⁻:66.00867,, found66.00884.

Synthesis of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (3d)

The product **3d** was a viscous transparent liquid; yield, 85%.¹H NMR (400 MHz, DMSO-d6) : δ = 3.73 – 3.80 (s, 3H, CH₃), 4.72 – 4.79 (d, 2H, CH₂), 5.16 – 5.25 (dd, 1H,CH), 5.25 – 5.33 (dd ,1H,CH), 5.95 – 6.10 (1H, ddt), 7.34 – 7.43 (dt, 2H, N-CH=CH-N), 7.50 – 7.58 (dt, 2H,N-CH=CH-N), 8.67 – 8.72 (s,1H,N-CH=N), 8.73 – 8.78 ppm (s, 1H, N-CH=N); ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 35.35, 50.57, 119.54, 120.04, 122.87, 124.01, 125.36, 125.63, 132.86, 138.76, 139.40 ppm; ¹¹B NMR (193 MHz, DMSO-*d*₆) δ = -8.68 ppm; IR (KBr): $\tilde{\nu}$ = 3426, 3129, 2429, 2229, 2136, 1543, 1160, 1126 cm⁻¹; HRMS (ESI) m/z: [M]⁺ calcd for C₁₀H₁₆BN₄⁺: 203.14625, found: 203.14596. [M]⁻ calcd for C₂N₃⁻:66.00867, found 66.00940.

Synthesis of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (3e)

The product **3e** was a viscous transparent liquid; yield, 86%. ¹H NMR (400 MHz, DMSO-d6) : δ = 0.85 - 0.94 (t, 3H, CH₃), 1.19 - 1.30 (q, 2H,CH₂), 1.70 - 1.83 (p, 2H, CH₂), 3.74 - 3.83 (s, 3H,CH₃), 4.06 - 4.14 (t, 2H, CH₂), 7.35 - 7.42 (d, 2H, N-

CH=CH-N), 7.51 – 7.56 (s, 1H, N-CH=CH-N), 7.60 – 7.65 (s, 1H, N-CH=CH-N), 8.65 – 8.70 (s, 1H, N-CH=N), 8.73 – 8.78 ppm (s, 1H, N-CH=N);.¹³C NMR (101 MHz, DMSO- d_6) δ = 13.75, 19.40, 32.02, 35.33, 48.18, 119.56, 122.79, 124.00, 125.33, 125.48, 138.66, 139.33 ppm; ¹¹B NMR (193 MHz, DMSO- d_6) δ = -9.59 ppm; IR (KBr): $\tilde{\nu}$ = 3487, 3132, 3078, 2961, 2872, 2429, 2232, 2133, 1546, 1162, 1129cm⁻¹; HRMS (ESI) m/z: [M]⁺ calcd for C₁₁H₂₀BN₄⁺: 219.17755, found: 219.17756. [M]⁻ calcd for C₂N₃⁻: 66.00867, found66.00926.

Synthesis of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) cyanoborohydride (4a)

The product 4a was a viscous transparent liquid; yield 80%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.03 - 0.50$ (dd, 3H, BH₃), 1.26 - 1.49 (m, 3H, CH₃), 3.77 - 3.80 (s, 3H, CH₃), 4.06 - 4.18 (d, 2H, CH₂), 7.31 - 7.39 (d, 2H, N-CH=CH-N), 7.49 - 7.52 (s, 1H), 7.58 - 7.63 (s, 1H), 8.63 - 8.65 (s, 1H, N-CH=N), 8.70 - 8.73 (s, 1H, N-CH=N). ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 15.79$, 43.74, 122.48, 123.99, 125.39, 125.49, 139.31.IR (KBr): $\tilde{\nu}$ = 3428, 3138, 3082, 2982, 2948, 2428, 2322, 2221, 2171, 1609, 1549, 1450, 1262, 1128, 1066 cm⁻¹. HRMS (ESI) m/z: [M]⁺ calcd for C₉H₁₈BN₄⁺: 191.14625, found: 191.14601.

Synthesis of (1-methyl-1H-imidazol-3-ium-1-yl)(1-vinyl-1H-imidazol-3-ium-1-yl) cyanoborohydride (4b)

The product 4b was a viscous transparent liquid; yield 72%.¹H NMR (400 MHz, DMSO-*d*₆): $\delta = -0.41 - 0.81$ (dd, 3H, BH₃), 3.79 - 3.81 (s, 3H, CH₃), 5.24 - 5.37 (d, 1H.CH=CH₂), 5.83 - 5.97 (d, 1H,CH=CH₂), 7.20 - 7.29 (dd, 1H, CH=CH₂), 7.36 - 7.42 (s, 1H, N-CH=CH-N), 7.50 - 7.52 (s, 1H, N-CH=CH-N), 7.52 - 7.55 (s, 1H, N-CH=CH-N), 7.92 - 8.12 (s, 1H, N-CH=CH-N), 8.66 - 8.70 (s, 1H, N-CH=N), 9.01 - 9.06 (s, 1H, N-CH=N). ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 35.43$, 107.60, 119.58, 124.01, 125.40, 126.27, 129.38, 137.97, 139.46.IR (KBr): $\tilde{\nu}$ = 3425, 3134, 2432, 2322, 2223, 2167, 1651, 1537, 1423, 1263, 1129, 1006 cm⁻¹. HRMS (ESI) m/z: [M]⁺ calcd for C₉H₁₆BN₄⁺: 189.13060, found: 189.13016.

Synthesis of (1-methyl-1H-imidazol-3-ium-1-yl)(1-propyl-1H-imidazol-3-ium-1-yl) cyanoborohydride (4c)

The product 4c was a viscous transparent liquid; yield 79%.¹H NMR (400 MHz, DMSO- d_6): $\delta = -0.19 - 0.57$ (m, 3H, BH₃), 0.81 - 0.85 (td, 3H, CH₃), 1.76 - 1.82 (q, 2H, CH₂), 3.78 - 3.80 (m, 3H, CH₃), 4.05 - 4.08 (m, 2H, CH₂), 7.36 - 7.37 (s, 1H, N-CH=CH-N), 7.38 - 7.40 (s, 1H, N-CH=CH-N), 7.52 - 7.54 (s, 1H, N-CH=CH-N), 7.59 - 7.65 (s, 1H, N-CH=CH-N), 8.66 - 8.68 (s, 1H, N-CH=N), 8.71 - 8.77 (s, 1H, N-CH=N). ¹³C NMR (101 MHz, DMSO- d_6) δ = 10.98, 23.47, 35.38, 49.96, 122.82, 124.03, 125.34, 125.50, 138.70, 139.34.IR (KBr): $\tilde{\nu}$ = 3410, 3133, 3082, 2967, 2878, 2428, 2331, 2222, 2173, 1611, 1546, 1458, 1263, 1127, 1047 cm⁻¹. HRMS (ESI) m/z: [M]⁺ calcd for C₁₀H₁₈BN₄⁺: 205.16190, found: 205.16164.

Synthesis of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) cyanoborohydride (4d)

The product 4d was a viscous transparent liquid; yield 76%.¹H NMR (400 MHz, DMSO- d_6): δ = -0.12 – 1.00 (m, 3H, BH₃), 3.87 (s, 3H, CH₃), 4.85 (d, 2H, CH₂), 5.12 – 5.48 (m, 2H, CH₂=CH-CH₂), 6.10 (dtt, 1H, CH₂=CH-CH2), 7.34 – 7.70 (m, 4H, N-CH=CH-N), 8.66 – 8.89 (m, 2H, N-CH=N).¹³C NMR (101 MHz, DMSO- d_6) δ 35.38, 35.40, 50.60, 120.13, 122.87, 124.01, 125.39, 125.67, 132.80, 138.72, 139.38.IR (KBr): $\tilde{\nu}$ = 3424, 3136, 2428, 2362, 2172, 1642, 1546, 1424, 1261, 1128, 995 cm⁻¹ HRMS (ESI) m/z: [M]⁺ calcd for C₁₀H₁₆BN₄⁺: 203.14625, found: 203.14606.

Synthesis of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) cyanoborohydride (4e)

The product 4e was a viscous transparent liquid; yield 80%.¹H NMR (400 MHz, DMSO-*d*₆): δ = 0.01 – 0.51 (m, 3H, BH₃), 0.88 (td, 3H, CH₃), 1.23 (q, 2H, CH₂), 1.76 (p, 2H,CH₂), 3.80 (s, 3H,CH₃), 4.10 (dt, 2H, CH₂), 7.37 (d, 2H, N-CH=CH-N), 7.52 (s, 1H, N-CH=CH-N), 7.61 (s, 1H, N-CH=CH-N), 8.65 (s, 1H, N-CH=N), 8.73 (s, 1H, N-CH=N).¹³C NMR (101 MHz, DMSO-*d*₆) δ 13.73, 19.39, 32.03, 35.36, 40.54, 48.21, 122.80, 124.01, 125.35, 125.49, 138.65, 139.33. IR (KBr): $\tilde{\nu}$ = 3415, 3133, 3078, 2967, 2878, 2429, 2330, 2172, 1612, 1546, 1458, 1263, 1161, 1128, 1048 cm⁻¹. HRMS (ESI) m/z: [M]⁺ calcd for C₁₁H₂₀BN₄⁺: 219.17755, found: 219.17731.

2 .NMR and HRMS-ESI Spectra

¹HNMR ¹³CNMR ¹¹BNMR spectra and HRMS of the ionic liquids

Figure S2 ¹HNMR (400 MHz) of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S3 ¹³CNMR (101 MHz) of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S4 ¹¹BNMR (193 MHz) of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S5 HRMS-ESI spectrum of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (positive) solvent (CH₂Cl₂).

Figure S6 HRMS-ESI spectrum of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (negative) solvent (CH₂Cl₂).

Figure S7 ¹HNMR (400 MHz) of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S8 ¹³CNMR (101 MHz) of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S9¹¹BNMR (193 MHz) of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S10 HRMS-ESI spectrum of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (positive) solvent (CH₂Cl₂).

Figure S11 HRMS-ESI spectrum of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (negative) solvent (CH₂Cl₂).

Figure S12 ¹HNMR (400 MHz) of (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S13 ¹³CNMR (101 MHz) of (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S14 ¹¹BNMR (193 MHz) of (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S15 HRMS-ESI SPECTRUMof (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (positive) solvent (CH₂Cl₂).

Figure S16 HRMS-ESI SPECTRUM of (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (negative) solvent (CH₂Cl₂).

Figure S17 ¹HNMR (400 MHz) of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S18 ¹³CNMR (101 MHz) of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S19 ¹¹BNMR (193 MHz) of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S20 HRMS-ESI SPECTRUM of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (positive) solvent (CH₂Cl₂).

Figure S21 HRMS-ESI SPECTRUMof (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (negative) solvent (CH₂Cl₂).

Figure S22 ¹HNMR (400 MHz) of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in $DMSO-D_6$.

Figure S24 ¹¹BNMR (193 MHz) of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide in DMSO-D₆.

Figure S25 HRMS-ESI SPECTRUMof (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (positive) solvent (CH₂Cl₂).

Figure S26 HRMS-ESI SPECTRUM of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide (negative) solvent (CH₂Cl₂).

Figure S27 ¹HNMR (400 MHz) of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S28 ¹³CNMR (101 MHz) of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S29 HRMS-ESI spectrum of (1-ethyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride (positive) solvent (H₂O).

Figure S30 ¹HNMR (400 MHz) of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1Himidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S31 ¹³CNMR (101 MHz) of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S32 HRMS-ESI spectrum of (1-propyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride (positive) solvent (H₂O).

Figure S33 ¹HNMR (400 MHz) of (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S34 ¹³CNMR (101 MHz) of (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S35 HRMS-ESI SPECTRUMof (1-vinyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride (positive) solvent (H₂O).

Figure S36 ¹HNMR (400 MHz) of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S37 ¹³CNMR (101 MHz) of (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S38 HRMS-ESI SPECTRUMof (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride (positive) solvent (H₂O).

Figure S39 ¹HNMR (400 MHz) of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S40 ¹³CNMR (101 MHz) of (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride in DMSO-D₆.

Figure S41 HRMS-ESI SPECTRUMof (1-butyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium cyanoborohydride (positive) solvent (H₂O).

3.Computational details

3.1 Geometry optimizated coordinate for the cations

Н	0.353929000	0.217453000	2.274392000	
Η	0.448350000	-1.765986000	1.868779000	
N	-0.822200000	-0.486725000	0.486418000	
С	-1.244643000	-1.341313000	-0.514614000	
С	-1.738504000	0.478514000	0.589134000	
С	-2.424954000	-0.867583000	-1.013917000	
Η	-0.686210000	-2.222696000	-0.786145000	
Η	-1.705560000	1.289577000	1.300044000	
Η	-3.067946000	-1.244464000	-1.793767000	
N	1.762961000	-0.421474000	0.618249000	
С	2.419163000	0.733229000	0.487746000	
С	2.506443000	-1.387299000	-0.033576000	
Η	2.109960000	1.676139000	0.911391000	
С	3.615105000	-0.791366000	-0.565010000	
Н	2.204405000	-2.422451000	-0.043740000	
Н	4.438988000	-1.195686000	-1.131987000	
N	3.543705000	0.547922000	-0.225352000	
N	-2.723026000	0.282291000	-0.305223000	
С	4.537446000	1.573402000	-0.558013000	
Η	5.504169000	1.302622000	-0.128866000	
Η	4.626034000	1.663992000	-1.642425000	
Η	4.214926000	2.527860000	-0.141856000	
С	-3.939692000	1.106593000	-0.452621000	
Н	-4.079230000	1.287880000	-1.521782000	
Η	-3.727246000	2.069430000	0.018311000	
С	-5.171819000	0.448437000	0.166799000	
Η	-6.036563000	1.104630000	0.033171000	
Η	-5.398670000	-0.508784000	-0.311206000	
Η	-5.033640000	0.277780000	1.238269000	
В	0.430588000	-0.645415000	1.440640000	

Η	0.396146000	-0.256448000	2.373047000
Н	0.499298000	-2.125075000	1.594674000
Ν	-0.887937000	-0.650760000	0.563699000
С	-1.356661000	-1.311036000	-0.559336000
С	-1.816085000	0.237418000	0.910149000
С	-2.577245000	-0.799357000	-0.887002000
Η	-0.798896000	-2.106528000	-1.026823000
Η	-1.759345000	0.895978000	1.762914000
Η	-3.259471000	-1.057387000	-1.679362000
Ν	1.695785000	-0.528829000	0.535108000
С	2.303486000	0.659551000	0.561246000
С	2.421438000	-1.337734000	-0.319333000
Η	1.995645000	1.503356000	1.159127000
С	3.468697000	-0.612202000	-0.812735000
Н	2.153186000	-2.368847000	-0.485911000
Η	4.262408000	-0.878579000	-1.493034000
Ν	3.378334000	0.646504000	-0.245546000
Ν	-2.860426000	0.182043000	0.053560000
С	4.313615000	1.755513000	-0.459942000
Η	5.310460000	1.468868000	-0.118957000
Н	4.344246000	2.011529000	-1.520742000
Η	3.973811000	2.620623000	0.109489000
В	0.433440000	-0.945341000	1.388955000
С	-4.020457000	1.002317000	0.157179000
Н	-4.019269000	1.615418000	1.051263000

С	-5.012724000	1.030109000	-0.729039000
Н	-5.032556000	0.428533000	-1.630973000
Н	-5.857553000	1.685087000	-0.554345000

Н	-0.926201000	-0.030185000	2.290925000
Н	-1.197394000	1.918573000	1.810493000
Ν	0.338364000	0.798827000	0.597282000
С	0.921575000	1.886611000	-0.024914000
С	1.158718000	-0.240266000	0.420260000
С	2.100334000	1.479990000	-0.583961000
Η	0.464632000	2.863111000	0.000452000
Н	0.996730000	-1.233993000	0.808484000
Н	2.844905000	2.022141000	-1.145093000
N	-2.209361000	0.371685000	0.484187000
С	-3.013079000	-0.667304000	0.715635000
С	-2.712301000	1.036520000	-0.618468000
Н	-2.897933000	-1.370137000	1.526002000
С	-3.827300000	0.374598000	-1.048439000
Н	-2.252509000	1.931925000	-1.004592000
Н	-4.501535000	0.572338000	-1.867175000
Ν	-4.005255000	-0.697166000	-0.192275000
Ν	2.233209000	0.133650000	-0.295028000
С	-5.092643000	-1.678323000	-0.254517000
Н	-6.053559000	-1.170081000	-0.152956000

Η	-5.055592000	-2.213221000	-1.205625000
Н	-4.975275000	-2.389153000	0.563495000
В	-1.005698000	0.798951000	1.423767000
С	3.387993000	-0.718724000	-0.638594000
Н	3.055121000	-1.756925000	-0.552868000
Н	3.624841000	-0.536181000	-1.691123000
С	4.606536000	-0.458680000	0.255187000
Η	4.897257000	0.595639000	0.174300000
Η	4.325891000	-0.630013000	1.301466000
С	5.786531000	-1.357400000	-0.131312000
Н	6.106676000	-1.178532000	-1.163656000
Η	6.643065000	-1.162240000	0.519320000
Н	5.532500000	-2.418921000	-0.035104000

С	-2.954091000	-0.139519000	-0.805271000
Ν	-3.796499000	-0.748484000	0.048427000
С	-3.452873000	-0.360324000	1.330857000
С	-2.393348000	0.493551000	1.209451000
N	-2.088066000	0.620218000	-0.132762000
С	-4.897966000	-1.645322000	-0.314679000
В	-1.023665000	1.580022000	-0.810045000
С	1.218565000	0.276231000	-1.010555000
N	2.412265000	0.199411000	-0.397065000
С	2.395329000	1.070582000	0.677535000
С	1.162721000	1.660167000	0.680274000

Ν	0.432696000	1.150511000	-0.377749000
С	3.570044000	-0.610616000	-0.842625000
С	4.140500000	-1.444576000	0.271194000
С	5.413038000	-1.365705000	0.666003000
Н	-2.989446000	-0.235961000	-1.879349000
Н	-3.988013000	-0.712132000	2.199029000
Η	-1.848906000	1.027157000	1.971870000
Н	-4.747256000	-2.622968000	0.147414000
Н	-5.846006000	-1.219745000	0.020343000
Н	-4.919305000	-1.758864000	-1.398597000
Н	-1.128914000	1.437747000	-1.999289000
Н	-1.207968000	2.697943000	-0.415236000
Н	0.949611000	-0.271894000	-1.900292000
Н	3.246424000	1.190279000	1.328530000
Н	0.757112000	2.417460000	1.332173000
Н	3.204935000	-1.239773000	-1.660696000
Η	4.324639000	0.068453000	-1.250871000
Η	3.461565000	-2.158245000	0.735521000
Η	5.801906000	-2.009580000	1.448316000
Н	6.113654000	-0.668393000	0.212299000

С	3.324881000	-0.819414000	0.522715000
Ν	4.468521000	-0.709006000	-0.175635000
С	4.628257000	0.621322000	-0.520363000
С	3.551903000	1.288309000	-0.007201000
Ν	2.740535000	0.374623000	0.638619000
С	5.400245000	-1.796788000	-0.488827000
		S51	

В	1.412391000	0.682888000	1.442139000	
С	-0.789631000	-0.283065000	0.482836000	
N	-1.741404000	0.014023000	-0.418845000	
С	-1.374812000	1.191781000	-1.044723000	
С	-0.187328000	1.578132000	-0.490520000	
N	0.171582000	0.643482000	0.462531000	
С	-2.994106000	-0.735118000	-0.638476000	
С	-4.203586000	-0.081088000	0.038736000	
С	-5.494597000	-0.876695000	-0.204199000	
С	-6.715033000	-0.236625000	0.466925000	
Н	2.951727000	-1.738664000	0.946896000	
Н	5.483334000	0.970177000	-1.077911000	
Н	3.315717000	2.340245000	-0.027295000	
Η	6.373233000	-1.590497000	-0.038440000	
Η	5.006702000	-2.728387000	-0.082078000	
Η	5.506086000	-1.892184000	-1.571274000	
Η	1.257274000	-0.190624000	2.253798000	
Η	1.507152000	1.788996000	1.896976000	
Н	-0.811200000	-1.137687000	1.141119000	
Η	-1.982079000	1.646495000	-1.811498000	
Н	0.416047000	2.448845000	-0.690837000	
Η	-3.140169000	-0.812050000	-1.719957000	
Η	-2.831381000	-1.746963000	-0.257183000	
Н	-4.011271000	0.000998000	1.116147000	
Н	-4.323388000	0.942274000	-0.339195000	
Н	-5.672447000	-0.961051000	-1.284619000	
Н	-5.366688000	-1.901674000	0.169031000	
Η	-7.618089000	-0.823118000	0.274697000	
Н	-6.584307000	-0.173024000	1.552829000	
Н	-6.889998000	0.777097000	0.089983000	

$N(CN)_2^- + H^+ \longrightarrow HN(CN)_2$

Figure S41 protonation reaction of dicyandiamide anion

Compounds	Heat of the formation
1-methylimidazole	127.1 ^[a]
1-ethylimidazole	97.91 ^[b]
1-propylimidazole	76.2 ^[b]
1-butylimidazole	55.4 ^[b]
1-vinylimidazole	223.7 ^[b]
1-allylimidazole	212.8 ^[b]
NH ₃	-45.9 ^[a]
$BH_2(NH_3)^{2+}$	418.46 ^[b]

Table S1 Heat of formation of the compound

[a] The data was got from the NIST [b]Heat of formation was calculated based on G2

Table S2 Enthalpies of the gas-phase species of cations and anions (based on isodesmic reactions).

		· · · · · · · · · · · · · · · · · · ·		
Compound	E ₀ (a.u.)	ZPE(a.u.)	T _C (a.u.)	H _T KJ/mol
1-methylimidazole	-264.8298954	0.098967	0.105307	15.9798432
1-vinylimidazole	-302.80676	0.103732	0.110759	17.71141296
2-buthylimidazole	-382.4209903	0.184402	0.194616	25.74418272
1-propylimidazole	-343.2252806	0.155963	0.164841	22.37682144
1-allylimidazole	-342.0020938	0.132327	0.140673	21.03592608
1-ethylimidazole	-304.0292598	0.12753	0.135051	18.95653008
CH ₄	-40.3796279	0.044816	0.048629	9.61059024
NH ₃	-56.4154632	0.034373	0.038191	9.62319264
$BH_2(NH_3)_2^+$	-138.6134981	0.104521	0.110416	14.8582296

T 11 02 E 41 1	· C.1	1	• •		(1 1	• 1	· ·	
I ahle N & Enthal	nies of the	oge_nhage g	necies of	catione l	hased	011 1900	legmic i	eactionel
I apre 55 Linulai	pies of the	gas-phase s		cations	Dascu	011 1500		cactions
		()			(

Compound	E ₀ (a.u.)	ZPE(a.u.)	T _C (a.u.)	H _T KJ/mol
2a	-594.7005807	0.2562	0.271208	37.82736384
2b	-593.474067	0.232351	0.24681	36.44362032
2c	-633.8972456	0.284599	0.301002	41.34343344

2d	-632.6742095	0.261018	0.276829	39.85130928
2e	-673.0934798	0.312987	0.330777	44.8393392

Table S4 Optimized structures of cations of the ionic liquid

Table S7 The lattice energy with heat of formation of cation and anion of ionic salts

Compound	$\Delta H_L[kJ mol^{-1}]$	$\Delta H_{f}^{[}$ (cation) [kJ mol ⁻¹]	ΔH _f (anion) [kJ mol ⁻¹]
3a	430.07	572.51	118.6
3b	430.33	708.55	118.6
3c	419.00	549.99	118.6
3d	421.89	685.29	118.6
3e	413.56	526.93	118.6
4a	433.04	572.51	-80.6
4b	422.95	708.55	-80.6
4c	436.47	549.99	-80.6
4d	429.36	685.29	-80.6
4e	414.84	526.93	-80.6