Bis-cyclometalated iridium(III) complexes with terpyridine

analogues: syntheses, structures, spectroscopy and computational

studies

Haleema Y. Otaif, Samuel J. Adams, Peter N. Horton, Simon J. Coles, Joseph M.

Beames, Simon J.A. Pope

Electronic Supplementary Information

Contents

Table S1	p2
Table S2	p3
Figure S1	p3
Figure S2	p4
Figure S3	p5
Figure S4	р5
Table S3	p6
Table S4	р7
Table S5	p8
Table S6	p9
Table S7	p9
Table S8	р9
Figure S5	p10
Table S9	p10
Table S10	p11
Figure S6	p11
Figure S7	p12

Compound	[lr(dpqx1 ⁻) ₂]PF ₆	[lr(dpqx2 ⁻) ₂]PF ₆	
	o o-		
Formula	$C_{48}F_{6}H_{37}IrN_{11}OP$	$C_{50.5}CIF_{6}H_{41}IrN_{10}P$	
$D_{calc.}$ /g cm ⁻³	1.701	1.569	
μ/mm⁻¹	3.166	6.659	
Formula Weight	1121.05	1160.55	
Colour	red	red	
Shape	prism	plate	
Size/mm ³	0.208×0.144×0.024	0.060×0.050×0.010	
<i>Т/</i> К	100(2)	100(2)	
Crystal System	monoclinic	monoclinic	
Space Group	P21/n	I2/a	
a/Å	15.61910(10)	20.0555(5)	
b/Å	17.9773(2)	17.4269(3)	
<i>c</i> /Å	15.73360(10)	29.5696(14)	
α/°	90	90	
βſ°	97.8170(10)	108.009(4)	
γl°	90	90	
V/Å ³	4376.77(6)	9828.4(6)	
Ζ	4	8	
Ζ'	1	1	
Wavelength/Å	0.71075	1.54178	
Radiation type	ΜοΚα	CuK _α	
Θ_{min}	1.724	2.983	
$\Theta_{max}/°$	28.701	68.233	
Measured Refl.	85017	60261	
Independent Refl.	11289	8958	
Reflections with I >	9970	6008	
2(I)			
R _{int}	0.0371	0.0687	
Parameters	569	621	
Restraints	0	0	
Largest Peak	3.846	2.863	
Deepest Hole	-0.784	-1.293	
GooF	1.058	1.033	
wR_2 (all data)	0.0716	0.1436	
wR ₂	0.0697	0.1284	
R₁ (all data)	0.0356	0.0729	
R_1	0.0298	0.0493	

 Table S1. Data collection parameters for the crystal structures.

	[lr(dc	xp1⁻) ₂]PF ₆			[Ir(dqx	p2 [_]) ₂]PF ₆	
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N(1)	Ir(1)	N(2)	77.14(10)	N(1)	Ir(1)	N(4)	76.67(19)
N(1)	Ir(1)	N(32)	110.82(9)	N(1)	Ir(1)	N(31)	174.31(18)
N(31)	Ir(1)	N(1)	170.86(10)	N(1)	Ir(1)	N(34)	104.31(19)
N(31)	Ir(1)	N(2)	108.97(9)	N(4)	Ir(1)	N(34)	92.90(17)
N(31)	Ir(1)	N(32)	76.53(10)	N(31)	Ir(1)	N(4)	108.93(19)
N(2)	Ir(1)	N(32)	89.59(9)	N(31)	Ir(1)	N(34)	76.7(2)
C(45)	Ir(1)	N(1)	90.83(10)	C(1)	Ir(1)	N(1)	81.7(2)
C(45)	Ir(1)	N(31)	82.12(10)	C(1)	Ir(1)	N(4)	158.4(2)
C(45)	Ir(1)	N(2)	93.60(9)	C(1)	Ir(1)	N(31)	92.7(2)
C(45)	Ir(1)	N(32)	158.27(10)	C(1)	Ir(1)	N(34)	93.1(2)
C(15)	Ir(1)	N(1)	82.15(11)	C(1)	Ir(1)	C(31)	90.1(2)
C(15)	Ir(1)	N(31)	91.84(11)	C(31)	Ir(1)	N(1)	96.8(2)
C(15)	Ir(1)	N(2)	159.19(11)	C(31)	Ir(1)	N(4)	91.7(2)
C(15)	Ir(1)	N(32)	95.87(10)	C(31)	Ir(1)	N(31)	82.2(2)
C(15)	Ir(1)	C(45)	88.73(10)	C(31)	Ir(1)	N(34)	158.9(2)

 Table S2. Selected bond angles for the complexes.

Figure S1. Packing diagram of complex $[Ir(dqxp1^{-})_2]PF_6$.

Figure S2. Packing diagram of complex [lr(dqxp2⁻)₂]PF₆.

Figure S3. ¹H NMR spectrum (CD₃CN) of $[Ir(dqxp2^{-})_2]PF_6$ showing the unique proton environments in the aromatic region.

Figure S4. Hypothetical structures comparing the N^N^C and N^N^N homoleptic coordination modes of the tridentate ligands.

Table S3. Calculated energies, bond lengths and angles of the two differentcoordination modes using B3LYP.

	N^N^C mode	N^N^N mode	
B3LYP Energy	-2266.8188 Hartree	-2267.5832Hartree	
	-61683.3108 eV	-61704.11122eV	
Internal Energy	-2266.2044 Hartree	-2266.9408 Hartree	
	-61666.5921 eV	-61686.6306 eV	
ZPE	0.5768 Hartree	0.6051 Hartree	
	15.6956 eV	15.6928 eV	

N^N^C mode		N^N^N mode	
Bond	Length (Å)	Bond	Length (Å)
Ir-N ₂	2.3227	Ir-N ₂	2.169
Ir-N₅	2.0235	Ir-N ₅	2.019
Ir-C ₁₄	2.0186	Ir-N ₁₈	2.158
Ir-C ₄₀	2.0014	Ir-N ₄₁	2.019
Ir-N ₄₇	2.0442	Ir-N ₅₃	2.162
Ir-N ₅₀	2.2901	Ir-N ₇₀	2.159

N^N^C mode		N^N^N mode	
	Angles (°)		Angles (°)
N_2 -Ir- N_5	75.6969	N_2 -Ir- N_5	78.302
C_{14} -Ir- N_5	82.0842	N ₂ -Ir-N ₇₀	88.787
C ₄₀ -Ir-N ₂	98.3608	N ₅ -Ir-N ₁₈	78.455
C ₄₀ -Ir-N ₅	97.8383	N ₅ -Ir-N ₇₀	101.592
C ₁₄ -Ir-C ₄₀	88.4132	N ₁₈ -Ir-N ₇₀	95.677
C ₁₄ -Ir-C ₄₀	88.4132	N ₁₈ -Ir-N ₅₃	88.062
C14-Ir-N47	97.9157	N ₄₁ -Ir-N ₅₃	78.396
C_{14} -Ir- N_{50}	87.3719	N ₄₁ -Ir-N ₇₀	78.453
C ₄₀ -Ir-N ₄₇	82.1621	N ₁₈ -Ir-N ₄₁	101.726
N47-Ir-N50	75.3388	N ₁₈ -Ir-N ₇₀	93.9384

Table S4. Calculated energies, bond lengths and angles of the two differentcoordination modes using B3LYP/LANL2DZ.

	N^N^C mode	N^N^N mode
B3LYP Energy	-2266.1273 Hartree -61691.70542 eV	-2267.8926 Hartree -61712.53 eV
Internal Energy	-2266.5124 Hartree -61674.9756 eV	-2267.2498 Hartree -61695.04049 eV
ZPE	0.57674 Hartree 15.7112 eV	0.605449 Hartree 16.4751 eV

N^N^C mode		N^N^N mode	
Bond	Length (Å)	Bond	Length (Å)
Ir-N ₂	2.030	Ir-N ₂	2.164
Ir-N ₂₇	2.284	Ir-N ₅	2.012
Ir-C ₅	2.011	Ir-N ₁₈	2.153
Ir-C ₄₃	2.011	Ir-N ₄₁	2.012
Ir-N ₄₀	2.030	Ir-N ₅₃	2.158
Ir-N ₆₁	2.285	Ir-N ₇₀	2.154

N^N^C mode		N^N/	N mode
	Angles (°)		Angles (°)
N ₂ -Ir-N ₂₇	75.703	N_2 -Ir- N_5	78.454
C ₅ -Ir-N ₂	81.887	N ₂ -Ir-N ₇₀	88.496
C_{43} -Ir- N_2	95.535	N ₅ -Ir-N ₁₈	78.604
C ₄₃ -Ir-N ₂₇	91.105	N ₅ -Ir-N ₇₀	101.481
C ₅ -Ir-C ₄₃	91.030	N ₁₈ -Ir-N ₇₀	95.835
C ₅ -Ir-N ₆₁	90.924	N ₁₈ -Ir-N ₅₃	87.838
C ₅ -Ir-N ₄₀	92.944	N ₄₁ -Ir-N ₅₃	78.548
C ₄₃ -Ir-N ₄₀	81.900	N ₄₁ -Ir-N ₇₀	78.605
C ₄₃ -Ir-N ₂	92.621	N ₁₈ -Ir-N ₄₁	101.584
N ₄₀ -Ir-N ₆₁	75.668	N ₁₈ -Ir-N ₇₀	95.835

Table S5. Calculated energies, bond lengths and angles of the two differentcoordination modes using M062X/LANL2DZ.

	N^N^C mode	N^N^N mode
M062X Energy	-2266.15195 Hartree -61665.16483 eV	-2266.9041 Hartree -61685.6313 eV
Internal Energy	-2265.53067 Hartree -61648.2587 eV	-2266.2555 Hartree -61667.9822 eV
ZPE	0.584044 Hartree 15.8927 eV	0.611566 Hartree 16.6416 eV

N^N^C mode		N^N/	N mode
Bond	Length (Å)	Bond	Length (Å)
Ir-N ₂	2.030	Ir-N ₂	2.138
Ir-N ₂₇	2.297	Ir-N₅	2.004
Ir-C ₅	1.976	Ir-N ₁₈	2.134
Ir-C ₄₃	2.011	Ir-N ₄₁	2.004
Ir-N ₄₀	2.030	Ir-N ₅₃	2.137
Ir-N ₆₁	2.298	Ir-N ₇₀	2.136

N^N^C mode		N^N^N mode	
	Angles (°)		Angles (°)
N ₂ -Ir-N ₂₇	75.206	N ₂ -Ir-N ₅	78.789
C ₅ -Ir-N ₂	82.686	N ₂ -Ir-N ₇₀	86.706
C_{43} -Ir- N_2	91.621	N ₅ -Ir-N ₁₈	78.784
C ₄₃ -Ir-N ₂₇	91.829	N ₅ -Ir-N ₇₀	100.989
C ₅ -Ir-C ₄₃	91.008	N ₁₈ -Ir-N ₇₀	97.582
C ₅ -Ir-N ₆₁	91.663	N ₁₈ -Ir-N ₅₃	86.470
C ₅ -Ir-N ₄₀	92.965	N ₄₁ -Ir-N ₅₃	78.773
C ₄₃ -Ir-N ₄₀	82.712	N ₄₁ -Ir-N ₇₀	78.798
C ₄₃ -Ir-N ₂	91.621	N ₁₈ -Ir-N ₄₁	101.398
N ₄₀ -Ir-N ₆₁	75.147	N ₁₈ -Ir-N ₇₀	97.582

[lr(dqxp1 ⁻) ₂]PF ₆				[lr(dqxp2 ⁻) ₂]PF ₆			
lr(1)	N(1)	Exp. 1.999(2)	Calc. 2.037	lr(1)	N(1)	Exp. 2.009(5)	Calc. 2.036
lr(1)	N(31)	1.997(2)	2.037	lr(1)	N(4)	2.191(5)	2.277
lr(1)	N(2)	2.183(2)	2.279	lr(1)	N(31)	2.017(5)	2.036
lr(1)	N(32)	2.199(2)	2.279	lr(1)	N(34)	2.198(5)	2.276
lr(1)	C(45)	1.993(3)	2.019	lr(1)	C(1)	1.999(6)	2.020
lr(1)	C(15)	1.989(3)	2.019	lr(1)	C(31)	2.005(7)	2.020

Table S6. A comparison of experimentally determined and calculated bond lengths(Å) for the coordination spheres of the complexes.

Table S7. The decomposition analysis of the singlet ground state frontier orbitals of $[lr(dqxp2^{-})_2]^+$.

Orbital	Moiety Contribution to Orbital (%)						
Orbitai	Ir		Q1	Q2			
	5d	R1	R2	R3	R1	R2	R3
LUMO +4	1	34	16	0	33	15	0
LUMO +3	1	0	22	27	0	22	27
LUMO +2	1	1	20	29	1	20	29
LUMO +1	4	40	12	0	33	10	0
LUMO	4	31	11	1	39	14	1
НОМО	26	2	3	32	2	3	32
HOMO -1	4	2	4	40	2	5	43
HOMO -2	6	1	5	42	1	5	39
HOMO -3	2	2	4	42	2	4	42
HOMO -4	8	2	1	43	2	1	42

Table S8. The decomposition analysis of the singlet ground state frontier orbitals of $[lr(dqxp2^{-})_2]^+$.

	[lr(dqxp2 ⁻) ₂]PF ₆
Transition	Contributing MOs
1 389.73nm, f= 0.0218	HOMO \rightarrow LUMO +1 (77%)
2 388.5 nm, f = 0.0162	HOMO → LUMO (79%)
3 352.33 nm, f = 0.0024	HOMO -6 \rightarrow LUMO +3 (24%)
	HOMO -4 \rightarrow LUMO +2 (45%)
4 350.92 nm, f = 0.0003	HOMO -6 \rightarrow LUMO +2 (11%)
	HOMO -5 \rightarrow LUMO +2 (29%)
	HOMO -4 \rightarrow LUMO +3 (39%)
5 349.04 nm, f = 0.0311	HOMO -6 \rightarrow LUMO (27%)
	HOMO -5 \rightarrow LUMO (22%)
	HOMO -3 \rightarrow LUMO (12%)

Figure S5. UV-Vis. absorption spectrum of **dqxp1** (black) and **dqxp2** (red) in EtOH solution.

Solvent	Absorption (ε x 10 ⁴ / M ⁻¹ cm ⁻¹) / nm	Emission /nm	Lifetime / ns	Quantum yield (%)
MeCN	260 (9.0), 309 (5.2), 365 (4.5)	614	310	1.8
EtOH	258 (8.1), 318 (5.4), 366 (4.9)	614	198	1.1
MeOH	261 (10.0), 309 (5.5), 365 (5.0)	620	134	0.6

Table S9. Solvatochromic photophysical data for [lr(dqxp1⁻)₂]PF₆.

Solvent	Absorption (ε x 10 ⁴ / M ⁻¹ cm ⁻¹) / nm	Emission /nm	Lifetime / ns	Quantum yield (%)
MeCN	265 (7.1), 328 (4.2), 376 (3.9)	617	323	2.0
EtOH	266 (7.7), 330 (4.6), 376 (4.3)	623	209	1.1
MeOH	264 (7.8), 329 (4.5), 376 (4.3)	629	145	0.7

Table S10. Solvatochromic photophysical data for [Ir(dqxp2⁻)₂]PF₆.

Figure S6. Normalised emission intensities of the two complexes at various dilutions (approx. 10^{-6} to 10^{-3} M), showing a clear spectral response to complex concentration. The left hand panel corresponds to $[Ir(dqxp1^{-})_2]PF_6$, and the right to $[Ir(dqxp2^{-})_2]PF_6$.

Figure S7. Kinetic traces of the major features of the transient spectra of $[Ir(dqxp1^{-})_2]PF_6$ in chloroform at room temperature, aerated. Wavelengths and lifetimes of each trace are inset.