Synthesis, characterization, and sorption activity of novel azo-colorants derived from phloroglucinol and antipyrine and their metal complexes

^{*a} Anh Van Nguyen, ^bAnh Thi Ngoc Vu, ^cLiya V. Bazan, ^cRavil T. Galeev, ^dAndrey N. Utenyshev, ^e Ekaterina B. Markova, ^{e,f} Olga V. Kovalchukova, ^{g,h} Van Thuan Le

- ^c E. K. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russia
- ^d. Semenov Institute of Problems of Chemical Physics RAS, 1, Academician Semenov avenue, Chernogolovka, Moscow region, 142432, Russia
- e. Kosygin Russian State University (Technology, Design, Art), 33, Sadovnicheskaya street, Moscow, 117997, Russia
- ^{f.} Peoples' Friendship University of Russia (RUDN University), 6, Miklukho- Maklaya street, Moscow, 117198, Russia
- e Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 55000, Vietnam
- ^h The Faculty of Natural Science, Duy Tan University, 03 Quang Trung, Da Nang 55000, Vietnam

^{a.} Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City, 72000, Vietnam.

^{b.} Pharmaceutical Department of Buon Ma Thuot University, 298 Ha Huy Tap, Buon Ma Thuot, Daklak 630000, Vietnam

Fig 2S. COSY ¹H-¹H NMR spectra of H₃L¹

Fig 3S. HMBC ^{1}H - ^{13}C NMR spectra of $H_{3}L^{1}$

Fig. 5S. DEPT 135 $^{13}\mathrm{C}$ NMR spectra of $\mathrm{H}_3\mathrm{L}^1$

а

Fig 6S. ¹H (a) and ¹³C (b) NMR spectra of H_3L^2 and mass spectra (c)

Fig 7S. Thermogravimetric analysis [ZnH₂L¹Cl.2H₂O] (4)

Fig 8S. Thermogravimetric analysis $Cd_2Cl_4(H_3L^1)_2$ (5)

Fig 9S. ¹H (a) and ¹³C (b) NMR spectra of $ZnH_2L^1Cl.2H_2O$ (4)

Fig 10S. ${}^{1}H$ (a) and ${}^{13}C$ (b) NMR spectra of $Cd_2Cl_4(H_3L^1)_2$ (5)

Fig 11S. Changes in electronic absorption spectra of ethanol solutions of H_3L^1 at stepwise addition of the solution $CuCl_2$

Fig 12S. Changes in electronic absorption spectra of ethanol solutions of H_3L^1 at stepwise addition of the solution NiCl₂

Fig 13S. Changes in electronic absorption spectra of ethanol solutions of H_3L^1 at stepwise addition of the solution $ZnCl_2$

Fig 14S. Changes in electronic absorption spectra of ethanol solutions of H_3L^1 at stepwise addition of the solution $CdCl_2$

Fig 15S. Changes in electronic absorption spectra of ethanol solutions of H_3L^1 at stepwise addition of the solution $CoCl_2$

Fig 16S. Changes in electronic absorption spectra of ethanol solutions of H_3L^2 at stepwise addition of the solution NiCl₂

Fig 17S. Changes in electronic absorption spectra of ethanol solutions of H_3L^2 at stepwise addition of the solution $CoCl_2$

Fig 18S. Changes in electronic absorption spectra of ethanol solutions of H_3L^2 at stepwise addition of the solution $CuCl_2$

Fig 19S. Changes in electronic absorption spectra of ethanol solutions of H_3L^2 at stepwise addition of the solution $ZnCl_2$

Fig 20S. IR spectra of $H_3L^1(2)$ and $H_3L^2(1)$

Fig 21S. IR spectra in the range 430 - 1800 cm1 of metal complexes: 1 - Cu(H₂L¹)Cl (3); 2 - Zn(H₂L¹)Cl.2H₂O (4); 3 - Cd₂Cl₄(H₃L¹)₂(5); 4 - Co(H₃L¹)Cl₂.3H₂O (1); Ni(H₂L¹)Cl (2)

The determination of the dissociation constants of three ligands was archived by pH metric titration in aqueous solution. The ionic strength was controlled constant at 0.1 M by adding a calculated amount of KCl, and the Schwarzenbach algebraic method was used.

$$\begin{split} K_{1} &= \frac{[H^{+}]\{ac_{Ligan} + [H^{+}] - [OH^{-}]\}}{(1 - \alpha)c_{Ligan} - [H^{+}] + [OH^{-}]}; \\ K_{2} &= \frac{[H^{+}]\{(a - 1)c_{Ligan} + [H^{+}] - [OH^{-}]\}}{(2 - \alpha)c_{Ligan} - [H^{+}] + [OH^{-}]}; \\ K_{3} &= \frac{[H^{+}]\{(a - 2)c_{Ligan} + [H^{+}] - [OH^{-}]\}}{(3 - \alpha)c_{Ligan} - [H^{+}] + [OH^{-}]}; \end{split}$$

where c_{Ligan} is the total concentration of H₃Lⁱ (i=1,2) and *a* is the neutralization point.

We titrated 25 mL 4.22×10^{-4} M solution of ligands (H₃L¹ and H₃L²) with 5.15×10^{-3} M solution of NaOH (figure 20S).

For example: After addition of 0.35 mL $5.15 \cdot 10^{-3}$ M solution of NaOH to 25 mL $4.22 \cdot 10^{-4}$ M solution of H₃L², we observed that pH 4.04. So [H⁺]=9.12 \cdot 10^{-5}; [OH⁻]=1.10 \cdot 10^{-10} M, and

point:
$$a = \frac{0.35 \times 5.14 \times 10^{-3}}{25 \times 4.22 \times 10^{-4}} = 0.17$$

neutralization point

 K_1

$$=\frac{[H^+]\left\{ac_{H_2L}+[H^+]-[OH^-]\right\}}{(1-\alpha)c_{H_2L}-[H^+]+[OH^-]} =\frac{[9.12\cdot10^{-5}]\left\{0.17\cdot4.22\cdot10^{-4}+9.12\cdot10^{-5}\right\}}{(1-0.17)4.22\cdot10^{-4}-9.12\cdot10^{-5}+1.25}$$
$$=5.76\cdot10^{-5}$$

(See table 1)

Table 1. Calculation of the dissociation constants of H_3L^2 at 298K.

V _{NaOH} , mL	a	pН	[H ⁺], M	[OH⁻], M	K _a , M	p <i>K</i>
0.35	0.17	4.04	9.12*10 ⁻⁵	1.10*10 ⁻¹⁰	5.76 10-5	4.24
0.77	0.38	4.23	5.89 10-5	1.69 10-10	6.27 10-5	4.20
1.01	0.49	4.37	4.27 10-5	2.34 10-10	6.25 10-5	4.21

1.53	0.75	4.77	1.69 10-5	5.89 10-10	6.29 10-5	4.21				
1.82	0.89	5.19	6.46 10-6	1.55 10-10	6.10 10-5	4.21				
$pK_1 = 4.21 \pm 0.03$										
2.38	1.16	5.85	1.41 10-6	7.08 10-9	2.81 10-7	6.55				
2.62	1.28	6.15	7.08 10-7	1.41 10-8	2.77 10-7	6.56				
3.01	1.47	6.53	2.95 10-7	3.39 10-8	2.63 10-7	6.58				
3.65	1.78	7.10	7.94 10-8	1.26 10-7	2.86 10-7	6.54				
3.80	1.85	7.25	5.62 10-8	1.78 10-7	3.33 10-7	6.48				
pK2=6.54±0.06										
5.02	2.45	9.13	7.41 10-10	1.73 10-5	5.37 10-10	9.27				
5.26	2.67	9.49	3.23 10-10	3.09 10-5	3.18 10-10	9.49				
5.50	2.69	9.76	1.73 10-10	5.75 10-5	2.13 10-10	9.66				
5.78	2.82	9.97	1.07 10-10	9.33 10-5	1.62 10-10	9.79				
pK2=9.55±0.28										

Fig 20S. Potentiometric titration curve H_3L^2 solution with NaOH 5.15×10⁻³ M at 298K

Fig 21S. Coloristic test of H_3L^1 , H_3L^2 and their complexes